Cho đường tròn tâm O và dây cung BC không đi qua O. Điểm A chuyển động trên cung lớn BC
Cho đường tròn tâm O và dây cung BC không đi qua O. Điểm A chuyển động trên cung lớn BC của đường tròn sao cho tam giác ABC nhọn. Gọi H là trực tâm của tam giác ABC. Chứng minh rằng có độ dài không đổi.
Giải sách bài tập Toán 10 Bài 3: Khái niệm vectơ
Bài 31 trang 86 SBT Toán 10 Tập 1: Cho đường tròn tâm O và dây cung BC không đi qua O. Điểm A chuyển động trên cung lớn BC của đường tròn sao cho tam giác ABC nhọn. Gọi H là trực tâm của tam giác ABC. Chứng minh rằng có độ dài không đổi.
Lời giải:
Kẻ đường kính AK (K ∈ (O)), gọi M là trung điểm của BC.
Vì H là trực tâm nên BH ⊥ AC, KC ⊥ AC ( là góc nội tiếp chắn nửa đường tròn)
⇒ BH // KC
Chứng minh tương tự ta được CH // BK (cùng ⊥ AB)
⇒ BHCK là hình bình hành
Ta có M là trung điểm BC nên M là trung điểm của HK
Xét tam giác AHK, có:
O là trung điểm AC
M là trung điểm HK
⇒ OM là đường trung bình của tam giác AHK
⇒ OM // AH và OM = AH
Vì O và M cố định nên OM cố định đó đó AH không đổi.