Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai


Giải sách bài tập Toán 10 Bài tập cuối chương I

Haylamdo biên soạn và sưu tầm lời giải Bài 50 trang 17 SBT Toán 10 Tập 1 trong Bài tập cuối chương 1. Với lời giải chi tiết nhất hy vọng sẽ giúp các bạn dễ dàng nắm được cách làm bài tập trong Sách bài tập Toán 10.

Bài 50 trang 17 SBT Toán 10 Tập 1: Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:

a) A: “∀n ∈ ℕ*, n > 1n”;

b) B: “∃x ∈ ℤ, 2x + 3 = 0”;

c) C: “∃x ∈ ℚ, 4x2 – 1 = 0”;

d) D: “∀n ∈ ℕ, n2 + 1 không chia hết cho 3”.

Lời giải:

a) Mệnh đề phủ định của mệnh đề A: “∀n ∈ ℕ*, n > 1n” là mệnh đề A¯: “∃n ∈ ℕ*, n ≤ 1n”.

Vì n ∈ ℕ* nên 1 ≤ n ⇔ 1nnn=1n.

Suy ra n ≥ 1n ∀n ∈ ℕ*. Do đó mệnh đề A sai và mệnh đề A¯ đúng.

b) Mệnh đề phủ định của mệnh đề B: “∃x ∈ ℤ, 2x + 3 = 0” là mệnh đề B¯: “∀x ∈ ℤ, 2x + 3 ≠ 0”.

Xét 2x + 3 = 0

⇔ x = 32

32

Do đó không tồn tại số nguyên x thỏa mãn 2x + 3 = 0.

Suy ra mệnh đề B sai và mệnh đề B¯ đúng.

c) Mệnh đề phủ định của mệnh đề C: “∃x ∈ ℚ, 4x2 – 1 = 0” là mệnh đề C¯: “∀x ∈ ℚ, 4x2 – 1 ≠ 0”.

Xét phương trình: 4x2 – 1 = 0

⇔ 4x2 = 1

⇔ x2 = <![if !vml]><![endif]>

x=12x=12

12;12 nên tồn tại số hữu tỉ x=12 hoặc x=12 thỏa mãn 4x2 – 1 = 0.

Do đó mệnh đề C đúng, mệnh đề C¯ sai.

d) Mệnh đề phủ định của mệnh đề D: “∀n ∈ ℕ, n2 + 1 không chia hết cho 3” là mệnh đề D¯: “∃n ∈ ℕ, n2 + 1 chia hết cho 3”.

Ta xét các trường hợp sau của n:

TH1. n chia hết cho 3: n = 3k (k ∈ ℕ)

⇒ n2 + 1 = 9k2 + 1 không chia hết cho 3.

TH2. n chia cho 3 dư 1: n = 3k + 1 (k ∈ ℕ)

⇒ n2 + 1 = 9k2 + 6k + 1 + 1 = 9k2 + 6k + 2 không chia hết cho 3.

TH2. n chia cho 3 dư 2: n = 3k + 2 (k ∈ ℕ)

⇒ n2 + 1 = 9k2 + 12k + 4 + 1 = 9k2 + 12k + 5 không chia hết cho 3.

Suy ra n2 + 1 không chia hết cho 3 với mọi số tự nhiên n.

Do đó mệnh đề D đúng và mệnh đề D¯ sai.

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác: