Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn Bài 2.26 trang 27 sách bài tập Toán 10 tập 1


Giải sách bài tập Toán lớp 10 Bài tập cuối chương II

Bài 2.26 trang 27 sách bài tập Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn Bài 2.26 trang 27 sách bài tập Toán 10 tập 1

Lời giải:

a) Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1)∉ d1 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

Đường thẳng d2: x = 10 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 10.

Chọn điểm I(1; 1) d2 và thay vào biểu thức x ta được 1 < 10.

Suy ra miền nghiệm của bất phương trình x ≤ 10 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).

Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1) d3 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y > 0 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1) và bỏ đi đường thẳng d3.

Vẽ đường thẳng d4: x - y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (4; 0) và (0; -4).

Chọn điểm I(1; 1) d4 và thay vào biểu thức x - y ta được 0 < 4.

Suy ra miền nghiệm của bất phương trình x - y > 4 là nửa mặt phẳng bờ d4 không chứa điểm I(1; 1) và bỏ đi đường thẳng d4.

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn Bài 2.26 trang 27 sách bài tập Toán 10 tập 1

b) Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(0; 0,5) Ï d1 và thay vào biểu thức y ta được 0,5 > 0.

Suy ra miền nghiệm của bất phương trình y 0 là nửa mặt phẳng bờ d1 chứa điểm I(0; 0,5).

Đường thẳng d2: y = 1 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 1.

Chọn điểm I(0; 0,5) d2 và thay vào biểu thức y ta được 0,5 < 1.

Suy ra miền nghiệm của bất phương trình y ≤ 1 là nửa mặt phẳng bờ d2 chứa điểm I(0; 0,5).

Vẽ đường thẳng d3: x + y = 2 bằng cách vẽ đường thẳng đi qua hai điểm (2; 0) và (0; 2).

Chọn điểm I(0; 0,5) d3 và thay vào biểu thức x + y ta được 0,5 < 2.

Suy ra miền nghiệm của bất phương trình x + y ≤ 2 là nửa mặt phẳng bờ d3 chứa điểm I(0; 0,5).

Vẽ đường thẳng d4: y - x = 2 bằng cách vẽ đường thẳng đi qua hai điểm (0; 2) và (-2; 0).

Chọn điểm I(0; 0,5) d4 và thay vào biểu thức y - x ta được 0,5 < 2.

Suy ra miền nghiệm của bất phương trình y - x ≤ 2 là nửa mặt phẳng bờ d4 chứa điểm I(0; 0,5).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn Bài 2.26 trang 27 sách bài tập Toán 10 tập 1

c) Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1) d1 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

Vẽ đường thẳng d2: 4x - 6y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (3; 2).

Chọn điểm I(1; 1)∉d2 và thay vào biểu thức 4x - 6y ta được -2 < 0.

Suy ra miền nghiệm của bất phương trình 4x - 6y < 0 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1) và bỏ đi đường thẳng d2.

Vẽ đường thẳng d3: 2x - 3y = 1 bằng cách vẽ đường thẳng đi qua hai điểm (2; 1) và (5; 3).

Chọn điểm I(1; 1) d3 và thay vào biểu thức 2x - 3y ta được -1 < 1.

Suy ra miền nghiệm của bất phương trình 2x - 3y 1 là nửa mặt phẳng bờ d3 không chứa điểm I(1; 1).

Khi đó hệ vô nghiệm vì mặt phẳng tọa độ đều bị gạch.

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn Bài 2.26 trang 27 sách bài tập Toán 10 tập 1

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: