X

Giải SBT Toán 7 Cánh diều

Cho tam giác ABC có góc A bằng 3 lần góc B bằng 6 lần góc C. Tìm số đo góc lớn nhất, góc bé nhất của tam giác ABC


Cho tam giác ABC có .

Giải sách bài tập Toán lớp 7 Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 12 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có A^=3B^=6C^ .

a) Tìm số đo góc lớn nhất, góc bé nhất của tam giác ABC.

b) Kẻ AD vuông góc với BC tại D. Chứng minh AD < BD.

Lời giải:

Cho tam giác ABC có góc A bằng 3 lần góc B bằng 6 lần góc C. Tìm số đo góc lớn nhất, góc bé nhất của tam giác ABC

a) Từ A^=3B^=6C^ suy ra: A^6=B^2=C^1 .

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

A^6=B^2=C^1=A^+B^+C^6+2+1=180°9=20°.

Suy ra

A^=20°.6=120°;

B^=20°.2=40°;

C^=20°.1=20°.

Vậy trong tam giác ABC, số đo góc lớn nhất là A^=120° , số đo góc bé nhất là C^=20° .

b) Xét ∆ABD vuông tại D ta có:

A^1+B^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

B^=40° (câu a)

Suy ra A^1=90°B^=90°40°=50° .

Trong ADB có: A^1>B^ (do 50° > 40°).

Suy ra BD > AD (trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn).

Vậy AD < BD.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: