X

Giải SBT Toán 7 Cánh diều

Cho tam giác ABC có AB < AC, AD là tia phân giác của góc BAD (D thuộc BC). Chứng minh góc ADB < góc ADC


Cho tam giác ABC có AB < AC, AD là tia phân giác của (D ∈ BC). Chứng minh .

Giải sách bài tập Toán lớp 7 Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 15 trang 71 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có AB < AC, AD là tia phân giác của BAD^ (D ∈ BC). Chứng minh ADB^<ADC^ .

Lời giải:

Cho tam giác ABC có AB < AC, AD là tia phân giác của góc BAD (D thuộc BC). Chứng minh góc ADB < góc ADC

Xét tam giác ABC có AB < AC (giả thiết)

Suy ra C^<B^ (trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn).

Vì AD là tia phân giác của góc BAC nên A^1=A^2 .

Xét ABD có: A^1+B^+ADB^=180° (tổng ba góc của một tam giác).

Suy ra ADB^=180°A^1B^ (1)

Xét ACD có: A^2+C^+ADC^=180° (tổng ba góc của một tam giác).

Suy ra ADC^=180°A^2C^ (2)

A^1=A^2 (chứng minh trên) và B^>C^ (chứng minh trên) (3)

Từ (1), (2) và (3) ta có ADB^<ADC^

Vậy ADB^<ADC^.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: