X

Giải SBT Toán 7 Cánh diều

Cho tam giác ABC có AB = 15 cm, BC = 8 cm. Tính độ dài cạnh AC, biết độ dài của nó (theo đơn vị xăng-ti-mét)


Giải sách bài tập Toán lớp 7 Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 14 trang 70 sách bài tập Toán lớp 7 Tập 2:

a) Cho tam giác ABC có AB = 15 cm, BC = 8 cm. Tính độ dài cạnh AC, biết độ dài của nó (theo đơn vị xăng-ti-mét) là một số nguyên tố lớn hơn bình phương của 4.

b) Độ dài ba cạnh của tam giác MNP tỉ lệ với 2; 3; 4. Tính độ dài cạnh lớn nhất, biết tổng độ dài hai cạnh là 20 cm.

Lời giải:

a) Áp dụng bất đẳng thức tam giác cho tam giác ABC ta có:

AB – BC < AC < AB + BC

Hay 15 – 8 < AC < 15 + 8

Suy ra 7 < AC < 23.

Độ dài cạnh AC là một số nguyên tố lớn hơn bình phương của 4 tức là AC > 42 = 16 và AC là số nguyên tố.

Do đó AC = 17 cm hoặc AC = 19 cm.

Vậy AC = 17 cm hoặc AC = 19 cm.

b) Gọi độ dài ba cạnh của tam giác MNP là m, n, p với 0 < m ≤ n ≤ p.

Độ dài ba cạnh của tam giác MNP tỉ lệ với 2; 3; 4 nên ta có:

m2=n3=p4.

Mặt khác tổng độ dài hai cạnh là 20 cm nên m + n = 20 (cm).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

m2=n3=p4=m+n2+3=205=4.

Suy ra p = 4 . 4 = 16 (cm).

Vậy độ dài cạnh lớn nhất của tam giác MNP là 16 cm.

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác: