Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G


Giải sách bài tập Toán lớp 7 Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 5 trang 60 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Vẽ AH vuông góc với BC tại H. Cho biết HB = HM. Chứng minh:

a) ∆ABH = ∆AMH;

b) AG=23AB.

Lời giải:

Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G

a) Xét ∆ABH và ∆AMH có:

AHB^=AHM^=90°,

Cạnh AH là cạnh chung,

HB = HM (giả thiết).

Do đó ΔABH = ΔAMH (c.g.c).

Vậy ΔABH = ΔAMH.

b) Vì ∆ABC có hai đường trung tuyến AM và BN cắt nhau tại G nên G là trọng tâm tam giác ABC.

Suy ra AG=23AM.

Mặt khác ΔABH = ΔAMH (câu a) nên ta có AB = AM (hai cạnh tương ứng).

Suy ra AG=23AB.

Vậy AG=23AB.

Xem thêm các bài giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác: