X

SBT Toán 7 Kết nối tri thức

Giải SBT Toán 7 trang 65 Tập 1 Kết nối tri thức


Haylamdo sưu tầm và biên soạn Giải SBT Toán 7 trang 65 Tập 1 trong Bài 15: Các trường hợp bằng nhau của tam giác vuông Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 65.

Giải SBT Toán 7 trang 65 Tập 1 Kết nối tri thức

Bài 4.33 trang 65 sách bài tập Toán lớp 7 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED.

Chứng minh rằng:

a) ∆AED = ∆BEC.

b) ∆ABC = ∆BAD.

Cho các điểm A, B, C, D, E như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED

Lời giải:

a) Xét ∆AED và ∆BEC ta có:  

AE  = BE (giả thiết)

 AED^=BEC^ = 90° (do AC và DB vuông góc với nhau)

ED = EC (giả thiết)

Do đó, ∆AED = ∆BEC (hai cạnh góc vuông).

b) Ta có: AC = AE + EC; BD = BE + ED. Mà AE = BE; EC = ED nên AC = BD.

Vì ∆AED = ∆BEC nên AD = BC (hai cạnh tương ứng)

Xét ∆ABC và ∆BAD có:  

BC = AD (chứng minh trên)

AB chung

AC = BD (chứng minh trên)

Do đó, ∆ABC = ∆BAD (c – c – c).

Bài 4.34 trang 65 sách bài tập Toán lớp 7 Tập 1: Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN ⊥ CM.

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36)

Lời giải:

Vì ABCD là hình vuông nên AB = BC = CD = DA.

Vì N là trung điểm của AD nên AN = ND = AD2.

Vì M là trung điểm của AB nên AM = MB = AB2.

Mà AB = AD nên AN = BM.

Xét ∆ANB và ∆BMC có:

AN = BM (chứng minh trên)

AB = BC (chứng minh trên)

NAB^=MBC^ = 90° (do ABCD là hình vuông)

Do đó, ∆ANB = ∆BMC (hai cạnh góc vuông)

Suy ra, BN = CM (hai cạnh tương ứng).

Gọi E là giao điểm của BN và CM.

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36)

Do ∆ANB = ∆BMC nên EMB^=CMB^=BNA^.

Từ định lí tổng ba góc trong tam giác BME và tam giác ABN, ta suy ra:

BEM^=180°-EMB^-MBE^=180°-BNA^-ABN^=BAN^=90°.

Vậy BN vuông góc với CM tại E.

Bài 4.35 trang 65 sách bài tập Toán lớp 7 Tập 1: Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng DAB^=CAB^, hãy chứng minh CB = DB.

Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng ∠DAB = ∠CAB, hãy chứng minh CB = DB

Lời giải:

Xét ∆ABC và ∆ABD có:

AB chung

CAB^=DAB^ (giả thiết)

 ACB^ = ADB^ = 90° (giả thiết)

Do đó, ∆ABC = ∆ABD (cạnh huyền – góc nhọn).

Suy ra CB = DB.

Bài 4.36 trang 65 sách bài tập Toán lớp 7 Tập 1: Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ∆ABC = ∆DEF, hãy chứng minh AH = DK.

Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38

Lời giải:

Vì ∆ABC = ∆DEF nên  

BAC^=EDF^; B^=E^; C^=F^AB=DE; AC=DF; BC=EF(các góc tương ứng và các cạnh tương ứng bằng nhau).

Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, AHB^=90°.

Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, DKE^=90°.

Xét ∆ABH và ∆DEK có:  

AHB^=DKE^=90° (chứng minh trên)

AB = DE (chứng minh trên)

B^=E^ (chứng minh trên)

Do đó, ∆ABH = ∆DEK (cạnh huyền – góc nhọn).

Suy ra AH = DK.

Lời giải sách bài tập Toán lớp 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông Kết nối tri thức hay khác:

Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác: