Giải SBT Toán 7 trang 66 Tập 1 Kết nối tri thức
Haylamdo sưu tầm và biên soạn Giải SBT Toán 7 trang 66 Tập 1 trong Bài 15: Các trường hợp bằng nhau của tam giác vuông Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 66.
Giải SBT Toán 7 trang 66 Tập 1 Kết nối tri thức
Bài 4.37 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng:
a) Nếu AB = DE; BC = EF và AH = DK thì ∆ABC = ∆DEF;
b) Nếu AB = DE, AC = DF và AH = DK thì ∆ABC = ∆DEF.
Lời giải:
a)
Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, .
Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, .
Xét ∆ABH và ∆DEK có:
(chứng minh trên)
AB = DE (giả thiết)
AH = DK (giả thiết)
Do đó, ∆ABH = ∆DEK (cạnh huyền – cạnh góc vuông).
Suy ra, (hai góc tương ứng).
Xét ∆ABC và ∆DEF có:
(chứng minh trên)
AB = DE (giả thiết)
BC = EF (giả thiết)
Do đó, ∆ABC = ∆DEF (c – g – c).
b) Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, .
Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, .
Xét ∆ABH và ∆DEK có:
(chứng minh trên)
AB = DE (giả thiết)
AH = DK (giả thiết)
Do đó, ∆ABH = ∆DEK (cạnh huyền – cạnh góc vuông).
Suy ra, BH = EK.
Xét ∆ACH và ∆DFK có:
(chứng minh trên)
AC = DF (giả thiết)
AH = DK (giả thiết)
Do đó, ∆ACH = ∆DFK (cạnh huyền – cạnh góc vuông).
Suy ra, CH = FK.
Ta có: BC = BH + HC; EF = EK + FK. Mà BH = EK; HC = FK nên BC = EF.
Xét ∆ABC và ∆DEF có:
BC = EF (chứng minh trên)
AC = DF (giả thiết)
AB = DE (giả thiết)
Do đó, ∆ABC = ∆DEF (c – c – c).
Bài 4.38 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng:
a) AC = BD.
b) AD // BC.
Lời giải:
Gọi giao điểm của AC và BD là O.
a) Xét ∆ABC và ∆DCB có:
(giả thiết)
AB = CD (giả thiết)
BC chung
Do đó, ∆ABC = ∆DCB (cạnh huyền – cạnh góc vuông).
Suy ra, AC = BD (hai cạnh tương ứng).
b) Vì ∆ABC = ∆DCB nên (hai góc tương ứng)
Xét tam giác OBC có:
= 180°.
Mà do nên = 180°
Suy ra = 180° –
Do đó, (1)
Xét ∆ABD và ∆DCA có:
AB = CD (giả thiết)
BD = AC (chứng minh trên)
AD chung
Do đó, ∆ABD = ∆DCA (c – c – c).
Suy ra, .
Xét tam giác OAD có:
= 180°.
Mà do nên = 180°
Suy ra = 180° –
Do đó, (2)
Mà (hai góc đối đỉnh) (3)
Từ (1), (2), (3) suy ra, hay .
Mà hai góc này ở vị trí so le trong nên AD // BC.
Bài 4.39 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:
a) AF = CE.
b) AF // CE.
Lời giải:
a) Vì ABCD là hình chữ nhật nên AD = BC; AB = CD.
Ta có: AD = AE + ED; BC = BF + FC mà FC = AE (gt) và AD = BC nên ED = BF.
Vì ABCD là hình chữ nhật nên .
Xét ∆ABF và ∆CDE có:
AB = CD (chứng minh trên)
BF = ED (chứng minh trên)
(do )
Do đó, ∆ABF = ∆CDE (hai cạnh góc vuông).
Suy ra, AF = CE.
b) Vì ∆ABF = ∆CDE nên (hai góc tương ứng).
Lại có ABCD là hình chữ nhật nên AD // BC nên (hai góc so le trong).
Ta có: ; nên .
Mà hai góc này ở vị trí đồng vị
Nên AF // CE (điều phải chứng minh).
Bài 4.40 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho năm điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE.
a) Chứng minh rằng AB = CE.
b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng .
Lời giải:
a) Xét ∆ABD và ∆CED có:
(giả thiết)
DA = DC (giả thiết)
DB = DE (giả thiết)
Do đó, ∆ABD = ∆CED (hai cạnh góc vuông).
Suy ra, AB = CE (hai cạnh tương ứng).
b) Vì ∆ABD = ∆CED nên (hai góc tương ứng).
Lại có: (do tam giác ABD vuông ở D) nên .
Xét tam giác BFC có:
Mà chính là góc và chính là góc .
Do đó, .
Nên
Suy ra = 180° – 90° = 90° (điều phải chứng minh).
Lời giải sách bài tập Toán lớp 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông Kết nối tri thức hay khác: