Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của AM
Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:
Giải sách bài tập Toán 8 Bài 2: Đường trung bình của tam giác - Chân trời sáng tạo
Bài 2 trang 45 sách bài tập Toán 8 Tập 2: Cho tam giác nhọn ABC, kẻ trung tuyển AM (M ∈ BC). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:
a) EF = FB;
b) AE = AB;
c) CE = 4EI.
Lời giải:
a) Xét ∆BCE, ta có MB = MC và MF // CE nên EF = FB.
b) Xét ∆AMF, ta có IA = IM và EI // MF (vì I ∈ CE) nên EA = EF.
Suy ra EA = EF = FB mà EA + EF + FB = AB.
Vậy AE = AB.
c) Xét ∆BCE, ta có MB = MC và EF = FB, nên MF là đường trung bình của ∆BCE.
Suy ra CE = 2MF (1)
Tương tự, có EI là là đường trung bình của ∆AMF, suy ra MF = 2EI (2)
Từ (1) và (2) suy ra CE = 4EI.
Lời giải SBT Toán 8 Bài 2: Đường trung bình của tam giác hay khác: