Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC
Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.
Giải sách bài tập Toán 8 Bài 2: Đường trung bình của tam giác - Chân trời sáng tạo
Bài 5 trang 45 sách bài tập Toán 8 Tập 2: Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.
a) Chứng minh tứ giác AMNB là hình thang.
b) Gọi I là giao điểm của AN và BM.Trên tia đối của tia NA lấy điểm E sao cho NE = NI. Trên tia đối của tia MB lấy điểm F sao cho ME = MI. Chứng minh EF // AB.
Lời giải:
a) Xét ∆ABC, ta có MA = MC và NB = NC nên MN là đường trung bình của ∆ABC.
Suy ra MN // AB (1)
Tứ giác AMNB có MN // AB nên AMNB là hình thang.
b) Xét ∆IEF, ta có NE = NI và MF = MI nên MN là đường trung bình của ∆IEF.
Suy ra MN // EF (2)
Từ (1) và (2) suy ra EF // AB.
Lời giải SBT Toán 8 Bài 2: Đường trung bình của tam giác hay khác: