Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.
Giải SBT Toán 8 Bài 3: Hình thang – Hình thang cân - Chân trời sáng tạo
Bài 5 trang 60 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.
Lời giải:
Xét ∆AMN có AM = AN (giả thiết).
Do đó ∆AMN cân tại A, suy ra .
Vì ∆ABC cân tại A nên .
Lại có (hai góc đối đỉnh) nên .
Mà hai góc này ở vị trí so le trong nên MN // BC.
Vậy tứ giác MNBC là hình thang.(1)
Mặt khác, AB = AC; AM = AN.
Suy ra AB + AM = AC + AN, do đó MB = NC (2)
Từ (1) và (2) suy ra MNBC là hình thang cân.
Lời giải SBT Toán 8 Bài 3: Hình thang – Hình thang cân hay khác: