Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành.
Giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi - Chân trời sáng tạo
Bài 7 trang 65 sách bài tập Toán 8 Tập 1: Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành.
Lời giải:
Xét ∆ABD ta có M, N lần lượt là trung điểm của AB, BD (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có MN // AD và .
Xét ∆ACD ta có P, Q lần lượt là trung điểm của DC, AC (giả thiết).
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có PQ // AD và .
Xét tứ giác MNPQ ta có MN // PQ (vì cùng song song với AD) và .
Suy ra tứ giác MNPQ là hình bình hành.
Lời giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi hay khác: