Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O
Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Gọi M và N lần lượt là trung điểm của OB và OD. Chứng minh tứ giác AMCN là hình bình hành.
Giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi - Chân trời sáng tạo
Bài 8 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Gọi M và N lần lượt là trung điểm của OB và OD. Chứng minh tứ giác AMCN là hình bình hành.
Lời giải:
Tứ giác ABCD là hình bình hành nên OA = OC và OB = OD.
Ta có: (N là trung điểm của OD); (M là trung điểm của OB); OB = OD (chứng minh trên).
Suy ra OM = ON.
Xét tứ giác AMCN ta có: OM = ON, OA = OC (chứng minh trên)
Do đó, tứ giác AMCN là hình bình hành.
Lời giải SBT Toán 8 Bài 4: Hình bình hành – Hình thoi hay khác:
Bài 1 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Qua O, vẽ một đường thẳng cắt AB và CD lần lượt tại M, N ...
Bài 2 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD ...
Bài 3 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD. Trên các cạnh AB và CD, lần lượt lấy các điểm M và N sao cho AM = CN ...
Bài 4 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao cho ...
Bài 5 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD có AD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N ...
Bài 6 trang 65 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD. Vẽ hình bình hành AECF (E ∈ AB, F ∈ CD). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy ...
Bài 7 trang 65 sách bài tập Toán 8 Tập 1: Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành ...