X

SBT Toán 9 Cánh diều

Từ một máy bay trực thăng, một người đặt mắt tại vị trí M ở độ cao MH = 920 m


Từ một máy bay trực thăng, một người đặt mắt tại vị trí M ở độ cao MH = 920 m. Người đó nhìn hai vị trí A và B của hai đầu một cây cầu theo phương MA và MB tạo với phương nằm ngang Mx các góc lần lượt là và với Mx // AB (Hình 24). Hỏi độ dài AB của cây cầu là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Giải SBT Toán 9 Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn - Cánh diều

Bài 24 trang 89 SBT Toán 9 Tập 1: Từ một máy bay trực thăng, một người đặt mắt tại vị trí M ở độ cao MH = 920 m. Người đó nhìn hai vị trí A và B của hai đầu một cây cầu theo phương MA và MB tạo với phương nằm ngang Mx các góc lần lượt là AMx^=37° và BMx^=31° với Mx // AB (Hình 24). Hỏi độ dài AB của cây cầu là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Từ một máy bay trực thăng, một người đặt mắt tại vị trí M ở độ cao MH = 920 m

Lời giải:

Do Mx // AB nên HAM^=AMx^=37°;  HBM^=BMx^=31° (các cặp góc ở vị trí so le trong).

Vì ∆AMH vuông tại H  nên AH=MHcotHAM^=920cot37°.

Vì ∆BMH vuông tại H  nên BH=MHcotHBM^=920cot31°.

Do đó AB = BH ‒ AH = 920.cot 31° ‒ 920.cot 37° ≈ 310 (m).

Vậy độ dài AB cây cầu khoảng 310 mét.

Lời giải SBT Toán 9 Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: