X

SBT Toán 9 Kết nối tri thức

Cho tam giác ABC. Chứng minh rằng hai đường tròn (B; BA) và (C; CA) cắt nhau. Gọi A' là giao điểm khác A của hai đường tròn đó


Cho tam giác ABC.

Haylamdo biên soạn và sưu tầm lời giải sách bài tập Toán 9 Bài 17: Vị trí tương đối của hai đường tròn - Kết nối tri thức

Bài 5.26 trang 68 sách bài tập Toán 9 Tập 1: Cho tam giác ABC.

a) Chứng minh rằng hai đường tròn (B; BA) và (C; CA) cắt nhau. Gọi A' là giao điểm khác A của hai đường tròn đó.

b) Chứng minh rằng A và A' đối xứng nhau qua BC.

c) Biết rằng AA' = 24 cm, AB = 15 cm và AC = 13 cm. Tính độ dài BC.

Lời giải:

Cho tam giác ABC. Chứng minh rằng hai đường tròn (B; BA) và (C; CA) cắt nhau. Gọi A' là giao điểm khác A của hai đường tròn đó

a) Áp dụng bất đẳng thức tam giác với tam giác ABC, ta có:

AB + AC > BC > AB – AC

Do đó tam giác (B; BA) và (C; CA) cắt nhau. (đpcm)

b) Xét ∆ABC và ∆A'BC có:

AB = A'B (A và A' cùng nằm trên đường tròn (B))

AC = A'C (A và A' cùng nằm trên đường tròn (C))

Chung cạnh BC

Do đó ∆ABC = ∆A'BC (c.c.c).

Suy ra ABC^=A'BC^(hai góc tương ứng) hay BC là đường phân giác của ABA'^.

Mà tam giác ABA' cân tại B do AB = A'B, suy ra BC là đường phân giác của góc ABA'^. cũng đồng thời là đường trung trực của AA'.

Do đó A và A' đối xứng với nhau qua BC. (đpcm)

c) Gọi D là giao điểm của BC và AA'.

Theo câu b) ta có AD = DA' (do A và A' đối xứng qua BC) và BC ⊥ AA', suy ra tam giác ABD và ACD vuông tại D.

Do AD = A'D nên AD=A'D=AA'2=242=12(cm).

+ Áp dụng định lý Pythagore với tam giác ABD, ta có:

BD=AB2AD2=152122=9 (cm)

+ Áp dụng định lý Pythagore với tam giác ADC ta có:

DC=AC2AD2=132122=5 (cm).

Vậy BC = BD + CD = 9 + 5 = 14 (cm).

Lời giải SBT Toán 9 Bài 17: Vị trí tương đối của hai đường tròn hay khác:

Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: