Gọi H là trung điểm của dây AB không đi qua tâm của đường tròn (O). Chứng minh rằng OH ⊥ AB
Gọi H là trung điểm của dây AB không đi qua tâm của đường tròn (O).
Haylamdo biên soạn và sưu tầm lời giải sách bài tập Toán 9 Bài 14: Cung và dây của một đường tròn - Kết nối tri thức
Bài 5.8 trang 59 sách bài tập Toán 9 Tập 1: Gọi H là trung điểm của dây AB không đi qua tâm của đường tròn (O).
a) Chứng minh rằng OH ⊥ AB.
b) Tính khoảng cách từ O đến AB, biết rằng AB = 8 cm và bán kính của (O) bằng 5 cm.
Lời giải:
a) Vì OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại O.
H là trung điểm của AB nên OH là đường trung tuyến đồng thời là đường cao của tam giác cân OAB.
Vây OH ⊥ AB. (đpcm)
b) H là trung điểm của AB nên (cm).
Áp dụng định lý Pythagore với tam giác OAH ta có:
(cm).
Vậy khoảng cách từ O đến AB là 3 cm.
Lời giải SBT Toán 9 Bài 14: Cung và dây của một đường tròn hay khác: