Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên có thể viết là: A. n!/k!; B. n!/k!( n - k)!; C.n!( n - k)!; D. k!(n –


Câu hỏi:

Cho tập A có n phần tử (n ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên có thể viết là:

A.\(\frac{{n!}}{{k!}}\);
B.\(\frac{{n!}}{{k!\left( {n - k} \right)!}}\);
C.\(\frac{{n!}}{{\left( {n - k} \right)!}}\);
D. k!(n – k)!.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Ta có: n! = n.(n – 1).(n – 2)….(n – k + 1).(n – k).(n – k – 1)….2.1.

(n – k)! = (n – k).(n – k – 1)…2.1

Ta có: \(\frac{{n!}}{{\left( {n - k} \right)!}} = \frac{{n(n - 1)(n - 2)...(n - k + 1).(n - k).(n - k - 1)...2.1}}{{(n - k).(n - k - 1)...2.1}}\)

= n. (n – 1).(n – 2)…(n – k + 1) = \(A_n^k\).

Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:

Câu 1:

Có bao nhiêu số tự nhiên có 5 chữ số, các chữ số khác 0 và đôi một khác nhau.

Xem lời giải »


Câu 2:

Ở căn hộ chung cư nhà Châu người ta thường dùng các chữ số từ 0 đến 9 để thiết lập mật mã. Nhà Châu muốn thiết lập một mật mã gồm 4 chữ số khác nhau hỏi nhà Châu có bao nhiêu cách thiết lập?

Xem lời giải »


Câu 3:

Một tổ có 8 học sinh trong đó có 1 bạn tên Cường và một bạn tên Nam. Hỏi số cách sắp xếp 8 học sinh đó thành một hàng sao cho Cường đứng đầu hàng và Nam đứng cuối hàng?

Xem lời giải »


Câu 4:

Nếu \(A_n^2 = 110\) thì

Xem lời giải »


Câu 5:

Cho 8 điểm phân biệt trong mặt phẳng. Số vectơ khác \(\overrightarrow 0 \) được tạo thành từ 8 điểm trên là:

Xem lời giải »