Có bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 3 được lập từ các số 1; 2; 3; 4; 5. A. 20; B. 24; C. 36; D. 45.
Câu hỏi:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 3 được lập từ các số 1; 2; 3; 4; 5.
A. 20;
B. 24;
C. 36;
D. 45.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi \[\overline {abc} \] là số có 3 chữ số khác nhau và chia hết cho 3 nên ta có a + b + c chia hết cho 3 vậy a; b; c được lập từ các bộ số {1; 2; 3}; {1; 3; 5}; {2; 3; 4}; {3; 4; 5}. Mỗi bộ số đó ta có 6 số được lập
Vậy có tất cả 4.6 = 24 số.