Phương trình đường chuẩn ∆ có dạng: A. x - p/2= 0; B. x + p = 0; C. y + p/2 = 0; D. x + p/2 = 0.


Câu hỏi:

Phương trình đường chuẩn ∆ có dạng:

A. \[x - \frac{p}{2} = 0\];
B. x + p = 0;
C. \[y + \frac{p}{2} = 0\];
D. \[x + \frac{p}{2} = 0\].

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Phương trình đường chuẩn ∆ có dạng: \[x + \frac{p}{2} = 0\].

Vậy ta chọn phương án D.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho G(3; 5). Tọa độ của \(\overrightarrow {OG} \) là:

Xem lời giải »


Câu 2:

Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {{a_1};{a_2}} \right),\,\,\vec b = \left( {{b_1};{b_2}} \right)\) và \(\vec x = \left( {{a_1} + {b_1};{a_2} + {b_2}} \right)\). Khi đó \(\vec x\) bằng:

Xem lời giải »


Câu 3:

Cho đường thẳng d có phương trình: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = - 3 - t\end{array} \right.\). Một vectơ chỉ phương của d có tọa độ là:

Xem lời giải »


Câu 4:

Cho đường thẳng d1, d2 có vectơ pháp tuyến lần lượt là \[{\vec n_1} = \left( {a;b} \right),\,\,{\vec n_2} = \left( {c;d} \right)\]. Kết luận nào sau đây đúng?

Xem lời giải »