Bài 9.22 trang 89 Toán 10 Tập 2 - Kết nối tri thức


Chọn ngẫu nhiên 4 viên bi từ một túi đựng 4 viên bi đỏ và 6 viên bi xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P().

Giải Toán lớp 10 Bài tập cuối chương 9

Bài 9.22 trang 89 Toán 10 Tập 2: Chọn ngẫu nhiên 4 viên bi từ một túi đựng 4 viên bi đỏ và 6 viên bi xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P(A¯).

Lời giải:

Phép thử là chọn ngẫu nhiên 4 viên bi từ túi gồm 10 viên bi (4 viên bi đỏ và 6 viên bi xanh). 

Chọn 4 viên bi từ 10 viên bi, thì số cách chọn là: C104= 210 (cách).

Do đó, số phần tử của không gian mẫu là n(Ω) = 210. 

Xét biến cố A, để có cả bi đỏ và bi xanh thì ta có các trường hợp sau:

+ Trường hợp 1: chọn 1 bi xanh trong 6 bi xanh, 3 bi đỏ trong 4 bi đỏ, số cách chọn là: C61.C43=24. 

+ Trường hợp 2: chọn 2 bi xanh trong 6 bi xanh, 2 bi đỏ trong 4 bi đỏ, số cách chọn là: C62.C42= 90.

+ Trường hợp 3: chọn 3 bi xanh trong 6 bi xanh, 1 bi đỏ trong 4 bi đỏ, số cách chọn là: C63.C41= 80.

Do các trường hợp là rời nhau nên n(A) = 24 + 90 + 80 = 194.

Vậy PA=nAnΩ=194210=97105.

Từ đó suy ra, P(A¯) = 1 –  P(A) = 197105=8105.

Lời giải bài tập Toán 10 Bài tập cuối chương 9 trang 88, 89 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2