Các giá trị m làm cho biểu thức f(x) = x^2 + 4x + m – 5 luôn dương là:
Câu hỏi:
Các giá trị m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là:
A. m < 9;
B. m ≥ 9;
C. m > 9;
D. \[m \in \emptyset \].
Trả lời:
Đáp án đúng là: C
Ta có: f(x) = x2 + 4x + m – 5 luôn luôn dương \[ \Leftrightarrow \] x2 + 4x + m – 5 > 0 với mọi x \[ \in \]ℝ
\[ \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {2^2} - (m - 5) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\m > 9\end{array} \right.\].
Vậy đáp án đúng là C.