Câu 1:
Ngắm Tháp Rùa từ bờ, chỉ với những dụng cụ đơn giản, dễ chuẩn bị, ta cũng có thể xác định được khoảng cách từ vị trí ta đứng tới Tháp Rùa. Em có biết vì sao?
Xem lời giải »
Câu 2:
Một tàu biển xuất phát từ cảng Vân Phong (Khánh Hòa) theo hướng đông với vận tốc 20km/h. Sau khi đi được 1 giờ, tàu chuyển sang hướng Đông Nam rồi giữ nguyên vận tốc và đi tiếp.
a) Hãy vẽ sơ đồ đường đi của tàu trong 1,5 giờ kể từ khi xuất phát (1km trên thực tế ứng với 1cm trên bản vẽ).
b) Hãy đo trực tiếp trên bản vẽ và cho biết sau 1,5 giờ kể từ khi xuất phát, tàu cách cảng Vân Phong bao nhiêu kilômét (số đo gần đúng).
c) Nếu sau khi đi được 2 giờ, tàu chuyển sang hướng nam (thay vì hướng đông nam) thì có thể dùng Định lí Pythagore (Pi – ta – go) để tính chính xác các số đo trong câu b hay không?
Xem lời giải »
Câu 3:
Trong Hình 3.8, hãy thực hiện các bước sau để thiết lập công thức tính a theo b, c và giá trị lượng giác của góc A.
a) Tính a2 theo BD2 và CD2.
b) Tính a2 theo b, c và DA.
c) Tính DA theo c và cosA.
d) Chứng minh a2 = b2 + c2 – 2bc.cosA.
Xem lời giải »
Câu 4:
Định lý Pythagore có phải là một trường hợp đặc biệt của định lý côsin hay không?
Xem lời giải »
Câu 5:
Từ định lý côsin hãy viết các công thức tính cosA, cosB, cosC theo độ dài các cạnh a, b, c của tam giác ABC.
Xem lời giải »
Câu 6:
Cho tam giác ABC, có AB = 5, AC = 8 và . Tính độ dài các cạnh và độ lớn các góc còn lại của tam giác.
Xem lời giải »
Câu 7:
Vẽ một tam giác ABC, sau đó đo độ dài các cạnh, số đo góc A và kiểm tra tính đúng đắn của Định lí Côsin tại đỉnh A đối với tam giác đó.
Xem lời giải »
Câu 8:
Dùng định lí Côsin, tính khoảng cách được đề cập trong HĐ1b.
Xem lời giải »
Câu 9:
Trong mỗi hình dưới đây, hãy tính R theo a và sin A.
Xem lời giải »
Câu 10:
Cho tam giác ABC có b = 8, c = 5 và . Tính số đo các góc, bán kính đường tròn ngoại tiếp và độ dài cạnh còn lại của tam giác.
Xem lời giải »
Câu 11:
Giải tam giác ABC, biết b = 32, c = 45,
Xem lời giải »
Câu 12:
Từ một khu vực có thể quan sát hai đỉnh núi, ta có thể ngắm và đo để xác định khoảng cách giữa hai đỉnh núi đó. Hãy thảo luận để đưa ra các bước cho một cách đo.
Xem lời giải »
Câu 13:
Cho ΔABC với I là tâm đường tròn nội tiếp tam giác.
a) Nêu mối liên hệ giữa diện tích tam giác ABC và diện tích tam giác IBC, ICA, IAB.
b) Tính diện tích tam giác ABC theo r, a, b, c.
Xem lời giải »
Câu 14:
Cho tam giác ABC với đường cao BD
a) Biểu thị BD theo AB và sin A.
b) Viết công thức tính diện tích S của tam giác ABC theo b, c, sin A.
Xem lời giải »
Câu 15:
Tính diện tích tam giác ABC có b = 2, .
Xem lời giải »
Câu 16:
Ta đã biết tính cosA theo độ dài các cạnh của tam giác ABC. Liệu sinA và diện tích S có tính được theo độ dài cạnh của tam giác ABC không?
Xem lời giải »
Câu 17:
Công viên Hòa Bình (Hà Nội) có dạng hình ngũ giác ABCDE như Hình 3.17. Dùng chế độ tính khoảng cách giữa hai điểm của Google Maps, một người xác định được các khoảng cách như trong hình vẽ. Theo số liệu đó, em hãy tính diện tích của công viên Hòa Bình.
Xem lời giải »
Câu 18:
Cho tam giác ABC có a = 6, b = 5, c = 8. Tính cosA, S, r.
Xem lời giải »
Câu 19:
Cho tam giác ABC có a = 10, . Tính R, b, c.
Xem lời giải »
Câu 20:
: Giải tam giác ABC và tính diện tích tam giác đó, biết
Xem lời giải »
Câu 21:
Một tàu đánh cá xuất phát từ cảng A, đi theo hướng S700E với vận tốc 70km/h. Đi được 90 phút thì động cơ của tàu bị hỏng nên tàu trôi tự do theo hướng nam theo vận tốc 8km/h. Sau 2 giờ kể từ khi bị hỏng, tàu neo đậu được vào một hòn đảo.
a) Tính khoảng cách từ cảng A tớiđảo nơi tàu neo đậu.
b) Xác định hướng từ cảng A tới đảo nơi tàu neo đậu.
Xem lời giải »
Câu 22:
Trên nóc một tòa nhà có một cột ăng – ten cao 5m, Từ một vị trí quan sát A cao 7m so với mặt đất có thể nhìn thấy đỉnh B và chân C của cột ăng – ten, với các góc tương ứng là 500 và 400 so với phương nằm ngang (H.3.18).
a) Tính các góc của tam giác ABC.
b) Tính chiều cao của tòa nhà.
Xem lời giải »
Câu 23:
Từ bãi biển Vũng Chùa, Quảng Bình ta có thể ngắm được Đảo yến. Hãy đề xuất cách xác định bề rộng của hòn đảo (theo chiều ta ngắm được).
Xem lời giải »
Câu 24:
Để tránh núi, đường giao thông hiện tại phải đi vòng như mô hình trong Hình 3.19. Để rút ngắn khoảng cách và tránh sạt lở núi, người ta dự định làm đường hầm xuyên núi, nối thẳng từ A tới D. Hỏi độ dài đường mới sẽ giảm bao nhiêu kilômét so với đường cũ.
Xem lời giải »