Cho A = {x thuộc ℝ | |x – m| bé hơn bằng 25}; B = {x thuộc ℝ | |x| lớn hơn bằng 2020}.


Câu hỏi:

Cho A = {x ℝ | |x – m| ≤ 25}; B = {x ℝ | |x| ≥ 2020}.

Có bao nhiêu giá trị nguyên m thỏa mãn A ∩ B = .

A. 3987;

B. 3988;

C. 3989;

D. 2020

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

A = {x ℝ | |x – m| ≤ 25} A = [m – 25; m + 25]

B = {x ℝ | |x| ≥ 2020} B = (-∞; -2020] [2020; +∞)

Để A ∩ B = thì -2020 < m – 25 và m + 25 < 2020 (1)

Khi đó (1) m25>2020m+25<2020m>1995m<1995 -1995 < m < 1995.

Vậy có 3989 giá trị nguyên m thỏa mãn.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Lớp 10A có 40 học sinh trong đó có 10 bạn học sinh giỏi Toán, 15 bạn học sinh giỏi Lý và 19 bạn không giỏi môn học nào trong hai môn Toán, Lý. Hỏi lớp 10A có bao nhiêu bạn học sinh vừa giỏi Toán vừa giỏi Lý?


Xem lời giải »


Câu 2:

Cho hai tập hợp P = [3m – 6; 4] và Q = (-2; m + 1), m ℝ. Tìm m để

P\Q = .

Xem lời giải »


Câu 3:

Hội khỏe Phù Đổng của trường Trần Phú, lớp 10A có 45 học sinh, trong đó có 25 học sinh thi điền kinh, 20 học sinh thi nhảy xa, 15 học sinh thi nhảy cao, 7 em không tham gia môn nào, 5 em tham gia cả 3 môn. Hỏi số em tham gia chỉ một môn trong ba môn trên là bao nhiêu?

Xem lời giải »


Câu 4:

Cho tập M = {(x; y) | x, y ℝ và x2 + y2 ≤ 0}. Hỏi tập M có bao nhiêu phần tử?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2