Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số đôi
Câu hỏi:
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số đôi một khác nhau từ các số trên.
A. 12;
B. 24;
C. 64;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi số tự nhiên có 4 chữ số cần tìm là: (a ≠ 0) khi đó:
Công đoạn 1. Chọn số a có 4 cách chọn (điều kiện a ≠ 0 nên a có thể chọn một trong các số 1, 5, 6, 7).
Công đoạn 2. Chọn số b có 3 cách chọn (vì các chữ số đôi một khác nhau nên b ≠ a, vậy b không được chọn lại số a đã chọn).
Công đoạn 3. Chọn số c có 2 cách chọn (vì các chữ số đôi một khác nhau nên c ≠ a, c ≠ b, vậy c không được chọn lại các số a, b đã chọn).
Công đoạn 4. Chọn số d có 1 cách chọn (vì các chữ số đôi một khác nhau nên d ≠ a, d ≠ b, d ≠ c, vậy d không được chọn lại các số a, b, c đã chọn).
Vậy áp dụng quy tắc nhân ta có số các số tự nhiên có 4 chữ số đôi một khác nhau có thể lập từ các số trên là: 4.3.2.1 = 24 (số).