Cho hai tập A = {x thuộc R, x + 3 < 4 + 2x} và B = {x thuộc R, 5x - 3 < 4x - 1}
Câu hỏi:
Cho hai tập \({\rm{A = \{ }}x \in \mathbb{R},\,x + 3 < 4 + 2x\)} và \({\rm{B = \{ }}x \in \mathbb{R},\,5x - 3 < 4x - 1\} \). Hỏi các số tự nhiên thuộc cả hai tập A và B là những số nào?
A. 0;
B. 1;
C. 0 và 1;
D. Không có.
Trả lời:
Đáp án đúng là: C
\({\rm{A = \{ }}x \in \mathbb{R},\,x > - 1\} \); \({\rm{B = \{ }}x \in \mathbb{R},\,x < 2\} \). Tập cần tìm là \[C = A \cap B\]. Suy ra \[C = {\rm{\{ }}x \in \mathbb{N}, - 1 < x < 2\} \]
Vậy số cần tìm là: 0 và 1.