Cho tam giác ABC có AB = 4, BC = 6, AC = 2 căn bậc hai 7 . Điểm M thuộc đoạn BC


Câu hỏi:

Cho tam giác ABC có AB = 4, BC = 6, AC = 27 . Điểm M thuộc đoạn BC sao cho MC = 2MB. Tính độ dài cạnh AM.

A. 42

B. 3

C. 23

D. 32

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Đặt AB = c = 4, AC = b = 27 , BC = a = 6.

Cho tam giác ABC có AB = 4, BC = 6, AC = 2 căn bậc hai 7 . Điểm M thuộc đoạn BC  (ảnh 1)

Áp dụng định lí côsin cho tam giác ABC:

b2 = a2 + c2 – 2accosB

cosB = a2+c2b22ac

cosB = 12

BC = 6 và MC = 2MB MC = 4 và MB = 2.

Áp dụng định lí côsin cho tam giác ABM:

AM2 = AB2 + BM2 – 2.AM.BM.cos ABM^

AM2 = 42 + 22 – 2.2.4. 12

AM = 23

Vậy đáp án đúng là C.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60 độ (ảnh 1)

Xem lời giải »


Câu 2:

Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể (ảnh 1)

Xem lời giải »


Câu 3:

Tam giác ABC có BC = a, AC = b, AB = c. Các cạnh a, b, c liên hệ với nhau bằng đẳng thức b.( b2 – a2 ) = c.( a2 – c2 ). Tính .

Xem lời giải »


Câu 4:

Tam giác ABC có AB = 622 , BC = 3 , CA = 2 . AD là tia phân giác trong của BAC^ . Tính ADB^ .

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2