Chọn ngẫu nhiên 4 viên bi từ một túi đựng 4 viên bi đỏ và 6 viên bi xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P(\(\overline A \)
Câu hỏi:
Trả lời:
Hướng dẫn giải
Phép thử là chọn ngẫu nhiên 4 viên bi từ túi gồm 10 viên bi (4 viên bi đỏ và 6 viên bi xanh).
Chọn 4 viên bi từ 10 viên bi, thì số cách chọn là: \(C_{10}^4\) = 210 (cách).
Do đó, số phần tử của không gian mẫu là n(Ω) = 210.
Xét biến cố A, để có cả bi đỏ và bi xanh thì ta có các trường hợp sau:
+ Trường hợp 1: chọn 1 bi xanh trong 6 bi xanh, 3 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^1.C_4^3 = \) 24.
+ Trường hợp 2: chọn 2 bi xanh trong 6 bi xanh, 2 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^2.C_4^2\) = 90.
+ Trường hợp 3: chọn 3 bi xanh trong 6 bi xanh, 1 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^3.C_4^1\) = 80.
Do các trường hợp là rời nhau nên n(A) = 24 + 90 + 80 = 194.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{194}}{{210}} = \frac{{97}}{{105}}.\)
Từ đó suy ra, P(\(\overline A \)) = 1 – P(A) = \(1 - \frac{{97}}{{105}} = \frac{8}{{105}}\).