Để f(x) = x^2 + (m + 1)x +2m + 7 > 0 với mọi x thì


Câu hỏi:

Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì

A. – 3 ≤ m ≤ 9;

B. \(\left[ \begin{array}{l}m < - 3\\m > 9\end{array} \right.\).

C. – 3 < m < 9;

D. \(\left[ \begin{array}{l}m \le - 3\\m \ge 9\end{array} \right.\).

Trả lời:

Đáp án đúng là: C

Ta có f(x) > 0 với \(\forall x \in \mathbb{R}\)\[\left\{ \begin{array}{l}a = 1 > 0\\\Delta = {(m + 1)^2} - 4.(2m + 7) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta = {m^2} - 6m - 27 < 0\end{array} \right.\]

Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.

Ta có bảng xét dấu

Để f(x) = x^2 + (m + 1)x +2m + 7 > 0 với mọi x thì (ảnh 1)

Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.

Vậy đáp án đúng là C.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tập xác định của hàm số \[y = \frac{{x - 1}}{{{x^2} - x + 3}}\]

Xem lời giải »


Câu 2:

Cho hàm số có đồ thị như hình vẽ

Cho hàm số có đồ thị như hình vẽ Kết luận nào sau đây là đúng (ảnh 1)

Kết luận nào sau đây là đúng

Xem lời giải »


Câu 3:

Tọa độ đỉnh I của parabol (P): y = x2 + 8x + 12 là

Xem lời giải »


Câu 4:

Đồ thị hàm số y = – 9x2 + 6x – 1 có dạng là:

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị thực của tham số m để bất phương trình

f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm

Xem lời giải »


Câu 6:

Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:

Cho hàm số y = ax^2 + bx + c có đồ thị như hình sau: (ảnh 1)

Kết luận nào sau đây đúng về hệ số a, b:

Xem lời giải »


Câu 7:

Hàm số y = x2 + 2x – 1 có bảng biến thiên là

Xem lời giải »


Câu 8:

Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2