Đường tròn (C) có tâm I (1; -5) và đi qua O (0; 0) có phương trình là:
Câu hỏi:
A. \[{\left( {x + 1} \right)^2} + {\left( {y - 5} \right)^2} = 26;\]
B. \[{\left( {x + 1} \right)^2} + {\left( {y - 5} \right)^2} = \sqrt {26} ;\]
C. \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = 26;\]
D. \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = \sqrt {26} .\]
Trả lời:
Đáp án đúng là: C
Ta có: Bán kính của đường tròn R = OI = \[\sqrt {{{(1 - 0)}^2} + {{( - 5 - 0)}^2}} = \sqrt {26} \]
Phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {1; - 5} \right)\\R = OI = \sqrt {26} \end{array} \right.\] là: \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = 26\]