Miền nghiệm của bất phương trình x + y < 1 là miền không bị gạch trong
Câu hỏi:
Miền nghiệm của bất phương trình x + y < 1 là miền không bị gạch trong hình vẽ nào sau đây?
A.
B.
C.
D.
Trả lời:
Đáp án đúng là: A
Đường thẳng x + y = 1 chia mặt phẳng tọa độ thành hai nửa mặt phẳng.
Với cặp số (x ; y) = (0 ; 0) ta có : 0 + 0 = 0 < 1 nên cặp số (x ; y ) = (0 ; 0) là nghiệm của bất phương trình x + y < 1.
Do đó điểm O(0; 0) thuộc miền nghiệm của bất phương trình x + y < 1.
Vậy miền nghiệm của bất phương trình x + y < 1 là nửa mặt phẳng có bờ là đường thẳng x + y = 1, chứa điểm O(0 ;0) (không kể bờ).
Vậy ta chọn đáp án A.
Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:
Câu 1:
Bạn Lan để dành được 300 nghìn đồng. Trong một đợt ủng hộ học sinh khó khăn, bạn Lan đã ủng hộ x tờ tiền loại 10 nghìn đồng, y tờ tiền loại 20 nghìn đồng từ tiền để dành của mình. Trong các bất phương trình sau, bất phương trình nào diễn tả giới hạn về tổng số tiền mà bạn Lan đã ủng hộ.
Xem lời giải »
Câu 2:
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Xem lời giải »
Câu 3:
Bất phương trình nào tương đương với bất phương trình 3x – y > 7(x – 4y) + 1?
Xem lời giải »
Câu 4:
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Xem lời giải »
Câu 5:
Cho hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\). Và các điểm sau: M(–1 ; 2), N(0; –1), O(0; 0). Có mấy điểm thuộc miền nghiệm của hệ bất phương trình đã cho?
Xem lời giải »
Câu 6:
Biểu thức F = 2x + y đạt giá trị nhỏ nhất với điều kiện \[\left\{ {\begin{array}{*{20}{c}}{2x - y \le 2}\\{x - 2y \le 2}\\{y \ge 0}\\{x \ge 0}\end{array}} \right.\] tại điểm có toạ độ là:
Xem lời giải »
Câu 7:
Cho hai điểm M(1; 0) và N(–2; –1) và hệ bất phương trình \[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\]. Trong hai điểm M và N, điểm nào thuộc miền nghiệm của hệ đã cho?
Xem lời giải »
Câu 8:
Cho hai bất phương trình 2x + y < 3 (1) và – x + 3y > 5 (2) và điểm A(0; 1). Kết luận nào sau đây là đúng?
Xem lời giải »