Một hộp chứa 12 tấm thẻ được đánh số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12. Rút ngẫu nhiên từ hộp đó một tấm thẻ. a) Mô tả không gian mẫu Ω. Các kết quả có thể có đồng khả năng không? b) Xé
Câu hỏi:
Một hộp chứa 12 tấm thẻ được đánh số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12. Rút ngẫu nhiên từ hộp đó một tấm thẻ.
a) Mô tả không gian mẫu Ω. Các kết quả có thể có đồng khả năng không?
b) Xét biến cố E: “Rút được thẻ ghi số nguyên tố”. Biến cố E là tập con nào của không gian mẫu?
c) Phép thử có bao nhiêu kết quả có thể? Biến cố E có bao nhiêu kết quả thuận lợi? Từ đó, hãy tính xác suất của biến cố E.
Trả lời:
Hướng dẫn giải
a) Phép thử là chọn ngẫu nhiên 1 tấm thẻ từ hộp.
Không gian mẫu Ω = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}.
Các kết quả có thể đồng khả năng.
b) Biến cố E: “Rút được thẻ ghi số nguyên tố”.
Trong các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12, có các số nguyên tố là: 2; 3; 5; 7; 11.
Do đó, E = {2; 3; 5; 7; 11}.
c) Phép thử có 12 kết quả có thể.
Biến cố E có 5 kết quả thuận lợi.
Xác suất của biến cố E là: \(\frac{5}{{12}}\).
Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:
Câu 1:
A. Các câu hỏi trong bài
Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1; 2; 3; …; 45, chẳng hạn bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.
Sau đó, người quản trò bốc ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1; 2; 3; …; 45. Bộ 6 số ghi trên 6 quả bóng đó được gọi là bộ số trúng thưởng. Nếu bộ số của người chơi trùng với bộ số trúng thưởng thì người chơi trúng giải độc đắc; nếu trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất.
Tính xác suất bạn An trúng giải độc đắc, giải nhất khi chơi.
Trong bài học này, ta sẽ tìm hiểu một số khái niệm cơ bản và định nghĩa cổ điển của xác suất, từ đó giúp ta có cơ sở trả lời câu hỏi nêu trên.
Xem lời giải »
Câu 2:
Trở lại Ví dụ 1, xét hai biến cố sau:
A: “Học sinh được gọi là một bạn nữ”;
B: “Học sinh được gọi có tên bắt đầu bằng chữ H”.
Hãy liệt kê các kết quả thuận lợi cho biến cố A, B.
Xem lời giải »
Câu 3:
Phần thưởng trong một chương trình khuyến mãi của một siêu thị là: ti vi, bàn ghế, tủ lạnh, máy tính, bếp từ, bộ bát đĩa. Ông Dũng tham gia chương trình được chọn ngẫu nhiên một mặt hàng.
a) Mô tả không gian mẫu.
b) Gọi D là biến cố: “Ông Dũng chọn được mặt hàng là đồ điện”. Hỏi D là tập con nào của không gian mẫu?
Xem lời giải »
Câu 4:
Trở lại Ví dụ 1, hãy cho biết khi nào biến cố C: “Học sinh được gọi là một bạn nam” xảy ra?
Xem lời giải »
Câu 5:
Từ định nghĩa cổ điển của xác suất, hãy chứng minh các nhận xét trên.
Xem lời giải »
Câu 6:
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6.
Xem lời giải »
Câu 7:
Xác suất của biến cố có ý nghĩa thực tế như sau:
Giả sử biến cố A có xác suất P(A). Khi thực hiện phép thử n lần (n ≥ 30) thì số lần xuất hiện biến cố A sẽ xấp xỉ bằng n.P(A) (nói chung khi n càng lớn thì sai số tương đối càng bé).
Giả thiết rằng xác suất sinh con trai là 0,512 và xác suất sinh con gái là 0,488. Vận dụng ý nghĩa thực tế của xác suất, hãy ước tính trong số trẻ mới sinh với 10 000 bé gái thì có bao nhiêu bé trai.
Hướng dẫn. Gọi n là số trẻ mới sinh. Ta coi mỗi lần sinh là một phép thử và biến cố liên quan đến phép thử là biến cố: “Sinh con gái”. Như vậy ta có n phép thử. Ước tính n, từ đó ước tính số bé trai.
Xem lời giải »
Câu 8:
B. Bài tập
Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30.
a) Mô tả không gian mẫu.
b) Gọi A là biến cố: “Số được chọn là số nguyên tố”. Các biến cố A và \(\overline A \) là tập con nào của không gian mẫu?
Xem lời giải »