Tìm tất cả các giá trị thực của tham số m để bất phương trình


Câu hỏi:

Tìm tất cả các giá trị thực của tham số m để bất phương trình

f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm

A. \[\left[ \begin{array}{l}m \le - 22\\m \ge 2\end{array} \right.\];

B. – 22 ≤ m ≤ 2;

C. – 22 < m < 2;

D. \[\left[ \begin{array}{l} - 22 \le m \le 2\\m = 3\end{array} \right.\].

Trả lời:

Đáp án đúng là: B

Ta có f(x) > 0 vô nghiệm \( \Leftrightarrow f\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\).

Xét m = 3 ta có f(x) = 5x – 4 với \(x > \frac{4}{5}\) thì f(x) > 0 nên m = 3 không thỏa mãn.

Xét m ≠ 3 ta có \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = m - 3 < 0\\\Delta = {m^2} + 20m - 44 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 3\\{m^2} + 20m - 44 \le 0\end{array} \right.\)

Xét tam thức bậc hai (biến m): m2 + 20m 44 có ∆’ = 102 – (-44) = 144 > 0. Do đó tam thức có hai nghiệm phân biệt x = -22 và x = 2.

Ta có bảng xét dấu

Tìm tất cả các giá trị thực của tham số m để bất phương trình  (ảnh 1)

Để \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m < 3\\ - 22 \le m \le 2\end{array} \right. \Leftrightarrow - 22 \le m \le 2\)

Vậy đáp án đúng là B.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x2 + 12x + 36 là:

Xem lời giải »


Câu 2:

Tam thức y = x2 – 12x – 13 nhận giá trị âm khi và chỉ khi

Xem lời giải »


Câu 3:

Tam thức nào sau đây nhận giá trị âm với mọi x < 2 

Xem lời giải »


Câu 4:

Phương trình x2 – 2(m – 1)x + m – 3 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi

Xem lời giải »


Câu 5:

Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2