Tính góc tạo bởi hai đường thẳng d1 : 6x – 5y + 15 = 0 và d2 :x= 10-6t và y= 1+5t


Câu hỏi:

Tính góc tạo bởi hai đường thẳng d1 : 6x – 5y + 15 = 0 và d2 :x=106ty=1+5t

A.  30°;                 

B. 45°;         

C. 60°;

D. 90°.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Đường thẳng d1 có vectơ pháp tuyến n1(6;5)

Đường thẳng d2 có vectơ chỉ phương u1(6;5) 

vectơ pháp tuyến của d2 là: n2(5;6)

Ta có: n1.n2 = 6.5 + (−5).6 = 0 nên n1 n2 vuông góc với nhau

Hay hai đường thẳng d1 và d2 vuông góc với nhau.

Vậy góc giữa hai đường thẳng d1 và d2 là: 90°.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tìm khoảng cách từ điểm M(1; 2) đến đường thẳng m: 4x + 3y – 2 = 0

Xem lời giải »


Câu 2:

Góc tạo bởi hai đường thẳng d1: 2x – y – 10 = 0 và d2: x − 3y + 9 = 0

Xem lời giải »


Câu 3:

Tìm toạ độ giao điểm của hai đường thẳng 7x – 3y + 16 = 0 và x + 10 = 0

Xem lời giải »


Câu 4:

Cho tam giác ABC có A(2; -1); B(2; -2) và C(0; -1). Độ dài đường cao kẻ từ A của tam giác ABC:

Xem lời giải »


Câu 5:

Khoảng cách giữa hai đường thẳng m: 6x – 8y + 3 = 0 và đường thẳng n: 3x – 4y – 6 = 0 bằng:

Xem lời giải »


Câu 6:

Khoảng cách từ giao điểm của hai đường thẳng d1: x – 3y + 4 = 0 và d2 : 2x +3y - 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng

Xem lời giải »


Câu 7:

Cho điểm A(7; 4) và đường thẳng d : 3x – 4y + 8 = 0. Bán kính đường tròn tâm A và tiếp xúc với d là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2