Giải Toán 10 trang 58 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 58 Tập 2 trong Bài tập cuối chương 7 Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 58.

Giải Toán 10 trang 58 Tập 2 Kết nối tri thức

Bài 7.26 trang 59 Toán 10 Tập 2: Phươngtrình nào sau đây là phương trình tham số của đường thẳng?

A. 2x – y + 1 = 0.          

B. x=2ty=t

C. x2 + y2 = 1.              

D. y = 2x + 3.

Lời giải:

Đáp án đúng là: B.

Phương trình tham số của đường thẳng có dạng x=x0+aty=y0+bt

Do đó trong các phương trình đã cho, thì phương trình ở đáp án B là phương trình tham số của đường thẳng với x0 = y0 = 0, a = 2 và b = 1. 

Bài 7.27 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình tổng quát của đường thẳng?

A. – x – 2y  + 3 = 0. 

B. x=2ty=t

C. y2 = 2x. 

D. x210+y26=1

Lời giải:

Đáp án đúng là: A.

Phương trình tổng quát của đường thẳng có dạng ax + bx + c = 0 với a, b không đồng thời bằng 0. 

Do đó, trong các đáp án đã cho, phương trình ở đáp án A là phương trình tổng quát của đường thẳng với a = – 1, b = – 2, c = 3. 

Bài 7.28 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình của đường tròn?

A. x2– y2 = 1.                   

B. (x – 1)2 + (y – 2)= – 4.

C. x2 + y2 = 2.                 

D. y2 = 8x.

Lời giải:

Đáp án đúng là: C.

Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2

Trong các đáp án trên, phương trình ở đáp án C là phương trình đường tròn với a = 0, b = 0 và R = 2

Chú ý: Phương trình ở đáp án B không phải là phương trình đường tròn vì – 4 < 0. 

Bài 7.29 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường elip?

A. x29+y29=1

B. x21+y26=1

C. x24y21=1

D. x22+y21=1.

Lời giải:

Đáp án đúng là: D.

Phương trình chính tắc của đường elip có dạng x2a2+y2b2=1 với a > b > 0. 

Ta có: 2>1>0

Do đó trong các đáp án đã cho, chỉ có phương trình ở đáp án D là phương trình chính tắc của đường elip. 

Bài 7.30 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường hypebol?

A. x23y22=1

B. x21y26=1

C. x26+y21=1

D. x22+y21=1.

Lời giải:

Đáp án đúng là: B.

Phương trình chính tắc của đường hypebol có dạng x2a2y2b2=1 với a, b > 0. 

Do đó trong các đáp án đã cho, chỉ có phương trình ở đáp án B là phương trình chính tắc của đường hypebol. 

Bài 7.31 trang 59 Toán 10 Tập 2: Phương trình nào sau đây là phương trình chính tắc của đường parabol?

A. x2 = 4y. 

B. x2 = – 6y.

C. y2 = 4x. 

D. y2 = – 4x.  

Lời giải:

Đáp án đúng là: C.

Phương trình chính tắc của đường parabol có dạng: y2 = 2px (với p > 0). 

Do đó ta loại ngay đáp án A, B. 

Đáp án D có – 4 < 0 nên đây cũng không phải phương trình chính tắc của parabol. 

Vậy trong các đáp án đã cho, chỉ có phương trình ở đáp án C là phương trình chính tắc của parabol. 

Bài 7.32 trang 59 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho A(1; – 1), B(3; 5), C(– 2; 4). Tính diện tích tam giác ABC.

Lời giải:

Độ dài đường cao từ đỉnh A đến BC chính bằng khoảng cách từ A đến đường thẳng BC, do đó diện tích của tam giác ABC bằng nửa tích khoảng cách từ A đến BC với BC. 

Ta viết phương trình đường thẳng BC: có vectơ chỉ phương là BC=23;45=5;1  và đi qua B(3; 5).

Suy ra vectơ pháp tuyến của đường thẳng BC là: n=1;5.

Do đó, phương trình đường thẳng BC là: 1(x – 3) – 5(y – 5) = 0 hay x – 5y + 22 = 0. 

Áp dụng công thức khoảng cách ta có: d(A; BC) = 15.1+2212+52=142613.

Độ dài đoạn BC là: BC = 322+542=26

Vậy diện tích tam giác ABC là: SABC12d(A; BC) . BC =  12.142613.26=14(đvdt).

Bài 7.33 trang 59 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho hai điểm A(– 1; 0) và B(3; 1). 

a) Viết phương trình đường tròn tâm A và đi qua B. 

b) Viết phương trình tổng quát của đường thẳng AB. 

c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB. 

Lời giải:

a) Đường tròn tâm A đi qua B có bán kính R = AB = 312+102=17

Phương trình đường tròn tâm A(– 1; 0) và đi qua B là: 

x12+y02=172 hay (x + 1)2 + y2 = 17. 

b) Đường thẳng AB có vectơ chỉ phương là AB=31;10=4;1

Suy ra một vectơ pháp tuyến của AB là n=1;  4

Đường thẳng AB đi qua điểm A(– 1; 0) và có một vectơ pháp tuyến là n=1;  4, do đó phương trình tổng quát của đường thẳng AB là: 1(x + 1) – 4( y – 0) = 0 hay x – 4y + 1 = 0. 

c) Đường tròn tâm O(0; 0) tiếp xúc với đường thẳng AB có bán kính bằng khoảng cách từ O đến AB. 

Ta có: R = d(O; AB) = 04.0+112+42=117

Phương trình đường tròn tâm O có bán kính R =  117là: x02+y02=1172 hay x2 + y2 = 117

Bài 7.34 trang 59 Toán 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2– 4x + 6y – 12 = 0.

a) Tìm tọa độ tâm I và bán kính R của (C).

b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.

Lời giải:

a) Ta có: x2 + y2 – 4x + 6y – 12 = 0 ⇔ x2 + y2 – 2 . 2 . x – 2 . (– 3) . y – 12 = 0. 

Có các hệ số: a = 2, b = – 3, c = – 12. 

Do đó, đường tròn (C) có tâm I(2; – 3) và bán kính R = 22+3212=25=5.

b) Vì 52 + 12– 4 . 5 + 6 . 1 – 12 = 0 nên điểm M(5; 1) thuộc (C).

Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là IM=52;13=3;4 và đi qua M(5; 1) nên có phương trình là: 3(x – 5) + 4(y – 1) = 0 hay 3x + 4y – 19 = 0.

Lời giải bài tập Toán lớp 10 Bài tập cuối chương 7 Kết nối tri thức hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2