Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1),


Câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.

A. \(\frac{6}{5}\);

B. \(\frac{{26}}{5}\);

C. 2;

D. 6.

Trả lời:

Đáp án đúng là C

Gọi trực tâm H của tam giác ABC có tọa độ là H(x;y)

Khi đó, ta có: \(\overrightarrow {AH} \left( {x + 3;y - 1} \right);\overrightarrow {BC} \left( {0; - 6} \right);\overrightarrow {BH} \left( {x - 2;y - 4} \right);\overrightarrow {AC} \left( {5; - 3} \right)\)

\(AH \bot BC \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} = 0 \Leftrightarrow \left( {x + 3} \right).0 + \left( {y - 1} \right).\left( { - 6} \right) = 0 \Leftrightarrow y = 1.\)

\(BH \bot AC \Rightarrow \overrightarrow {BH} .\overrightarrow {AC} = 0 \Leftrightarrow \left( {x - 2} \right).5 + \left( {y - 4} \right).\left( { - 3} \right) = 0\)

\( \Leftrightarrow 5x - 10 - 3y + 12 = 0\)

\( \Leftrightarrow 5x - 3y = - 2\)

Mà y = 1 \( \Rightarrow 5x - 3.1 = - 2 \Leftrightarrow x = \frac{1}{5}.\)

Suy ra S = 5.\(\frac{1}{5}\) + 1 = 2.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

Xem lời giải »


Câu 2:

Góc giữa vectơ \(\overrightarrow a \left( { - 1; - 1} \right)\) và vecto \(\overrightarrow b \left( { - 1;0} \right)\) có số đo bằng:

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?

Xem lời giải »


Câu 4:

Khi nào thì hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) vuông góc?

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2