Từ 5 bông hồng vàng, 3 bông hồng trắng, 4 bông hồng đỏ (các bông hồng xem như khác nhau)
Câu hỏi:
Từ 5 bông hồng vàng, 3 bông hồng trắng, 4 bông hồng đỏ (các bông hồng xem như khác nhau). Người ta muốn chọn ra một bó gồm 7 bông. Gọi A là biến cố “có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ” . Số phần tử của biến cố A là:
C. 140;
D. 150.
Trả lời:
Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:
Câu 1:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lí, 2 quyển sách hoá. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 2 quyển sách toán. Xác suất để 3 quyển lấy ra có ít nhất 2 quyển môn toán là:
Xem lời giải »
Câu 2:
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Tính số phần tử của biến cố A :” 4 viên bi lấy ra có ít nhất một viên bi màu đỏ”
Xem lời giải »
Câu 3:
Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ 3 có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa. Tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng hoa ly.
Xem lời giải »
Câu 4:
Xếp ngẫu nhiên 3 bạn An; Bình ; Cường đứng thành 1 hàng dọc. Tính xác suất để Bình và Cường đứng cạnh nhau.
Xem lời giải »
Câu 5:
Gieo đồng tiền hai lần. Xác xuất để sau hai lần gieo thì kết quả của 2 lần tung là khác nhau:
Xem lời giải »
Câu 6:
Một ban đại diện gồm 5 người được thành lập từ 10 người có tên sau đây: Liên; Mai; Mộc; Thu; Miên; An; Hà; Thanh; Mơ; Kim. Xác suất để đúng 2 người trong ban đại diện có tên bắt đầu bằng chữ M là:
Xem lời giải »
2018 © All Rights Reserved.
<<<<<<< HEAD
=======
>>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2