Giải Toán 11 trang 79 Tập 1 Cánh diều
Với Giải Toán 11 trang 79 Tập 1 trong Bài tập cuối chương 3 Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 79.
Giải Toán 11 trang 79 Tập 1 Cánh diều
Bài 1 trang 79 Toán 11 Tập 1: Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 ∈ (a; b). Điều kiện cần và đủ để hàm số y = f(x) liên tục tại x0 là:
A. ;
B. ;
C. ;
D. .
Lời giải:
Theo lí thuyết ta chọn đáp án D
Bài 2 trang 79 Toán 11 Tập 1: Tính các giới hạn sau:
a) lim;
b) lim;
c) lim;
d) lim;
e) lim;
g) lim.
Lời giải:
Bài 3 trang 79 Toán 11 Tập 1: Tính các giới hạn sau:
a) ;
b) ;
c) .
Lời giải:
a) -5.(-3)+6 = -3.
b) .
c)
Bài 4 trang 79 Toán 11 Tập 1: Tính các giới hạn sau:
a) ;
b) ;
c) ;
d) ;
e) ;
g) .
Lời giải:
Bài 5 trang 79 Toán 11 Tập 1: Cho hàm số f(x) =
a) Với a = 0, b = 1, xét tính liên tục của hàm số tại x = 2.
b) Với giá trị nào của a, b thì hàm số liên tục tại x = 2?
c) Với giá trị nào của a, b thì hàm số liên tục trên tập xác định?
Lời giải:
a) Với a = 0, b = 1, hàm số f(x) =
Với x < 2 thì f(x) = 2x là hàm liên tục.
Với x > 2 thì f(x) = – 3x + 1 là hàm liên tục.
Tại x = 2 ta có:
, .
Suy ra . Do đó không tồn tại .
Vậy hàm số tiên tục trên ( – ∞; 2) và (2; +∞).
b) Ta có:
,
Để hàm số liên tục tại x = 2 thì:
.
Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.
c) Tập xác định của hàm số là: ℝ.
Để hàm số liên tục trên ℝ thì hàm số liên tục tại x = 2. Vì vậy với a = 0 và b = 10 thỏa mãn điều kiện.
Lời giải bài tập Toán 11 Bài tập cuối chương 3 Cánh diều hay khác: