Bài 2 trang 112 Toán 11 Tập 1 Chân trời sáng tạo
Cho hai hình bình hành ABCD và ABEF không nằm trong cùn một mặt phẳng. Gọi O và O’ lần lượt là tâm của ABCD và ABEF.
Giải Toán 11 Bài 3: Đường thẳng và mặt phẳng song song - Chân trời sáng tạo
Bài 2 trang 112 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không nằm trong cùn một mặt phẳng. Gọi O và O’ lần lượt là tâm của ABCD và ABEF.
a) Chứng minh đường thẳng OO’ song song với các mặt phẳng (CDEF), (ADF) và (BCE).
b) Gọi M và N lần lượt là trung điểm của AF và BE. Chứng minh MN // (CDFE).
c) Tìm giao tuyến của hai mặt phẳng (OMN) và (ABCD).
Lời giải:
a) Vì O là tâm hình bình hành ABCD nên O là trung điểm AC và BD, O’ là tâm của hình bình hành ABEF nên O’ là trung điểm AE và BF.
+) Ta có: OO’ // FD (tính chất đường trung bình trong tam giác BDF), mà FD ⊂ (CDEF). Do đó OO’ // (CDEF).
+) Ta lại có: FD ⊂ (ADF) nên OO’ // (ADF).
+) Ta có: OO’ // EC (tính chất đường trung bình trong tam giác ACE), mà EC ⊂ (BCE). Do đó OO’ // (BCE).
b) Vì M và N lần lượt là trung điểm của AF và BE nên MN là đường trung bình của ABEF, suy ra MN // EF mà EF ⊂ (CDEF). Do đó MN // (CDEF).
c) Ta có MN // AB mà AB ⊂ (ABCD) và MN ⊂ (OMN)
Ta lại có: O ∈ (OMN) ∩ (ABCD)
Do đó giao tuyến của (OMN) và (ABCD) là đường thẳng đi d qua O và song song với AB.
Lời giải bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song hay, chi tiết khác: