Bài 2 trang 85 Toán 11 Tập 2 Chân trời sáng tạo


Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy và có tất cả các cạnh bằng nhau.

Giải Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Chân trời sáng tạo

Bài 2 trang 85 Toán 11 Tập 2: Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy và có tất cả các cạnh bằng nhau.

a) Tìm góc giữa đường thẳng SA và (ABCD).

b) Tìm góc phẳng nhị diện [A, SO, B], [S, AB, O].

Lời giải:

Bài 2 trang 85 Toán 11 Tập 2 Chân trời sáng tạo

a) S.ABCD là hình chóp tứ giác đều có O là tâm của đáy

SO ⊥ (ABCD) ⇒ (SA, (ABCD)) = (SA,OA) = SAO^

Vậy góc giữa đường thẳng SA và (ABCD) là SAO^

b) Gọi M là trung điểm của AB

SO ⊥ (ABCD) ⇒ SO ⊥ AO, SO ⊥ BO

Vậy AOB^ là góc phẳng nhị diện [A, SO, B]

• ABCD là hình vuông nên AOB^=90°

• ΔSAB đều nên SM ⊥ AB

• ΔOAB vuông cân tại O nênOM ⊥ AB

Vậy SMO^ là góc phẳng nhị diện [S, AB, O].

Lời giải bài tập Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: