Thực hành 2 trang 85 Toán 11 Tập 2 Chân trời sáng tạo


Cho hình chóp tứ giác đều S.ABCD với O là tâm của đáy và có tất cả các cạnh đều bằng a. Xác định và tính góc phẳng nhị diện:

Giải Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Chân trời sáng tạo

Thực hành 2 trang 85 Toán 11 Tập 2: Cho hình chóp tứ giác đều S.ABCD với O là tâm của đáy và có tất cả các cạnh đều bằng a. Xác định và tính góc phẳng nhị diện:

a) [S, BC, O];

b) [C, SO, B].

Lời giải:

Thực hành 2 trang 85 Toán 11 Tập 2 Chân trời sáng tạo

a) Gọi M là trung điểm BC.

ΔSBC đều ⇒ SM ⊥ BC

ΔOBC vuông cân tại O ⇒ OM ⊥ BC

Khi đó góc phẳng nhị diện [S, BC, O] = (MO, MS).

Ta có: O là trung điểm của BD, M là trung điểm của BC

⇒ OM là đường trung bình của ΔBCD

OM=12CD=a2

AC=AB2+BC2=a2OC=AC2=a22

ΔSBC đều, M là trung điểm của BC

⇒ SM là đường trung tuyến SM=a32

cosMO,MS=OMMS = a2a32 = a2.2a3 = 13.

Suy ra [S, BC, O] = (MO, MS) 54°7'

b) Ta có:

• SO ⊥ (ABCD) nên SO⊥OB

• SO ⊥ (ABCD) nên SO⊥OC

Vậy BOC^ là góc phẳng nhị diện [C, SO, B].

Mà ABCD là hình vuông nên BOC^=90°.
Vậy [C, SO, B] = 90o.

Lời giải bài tập Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: