b) Viết phương trình tiếp tuyến đó.


Câu hỏi:

b) Viết phương trình tiếp tuyến đó.

Trả lời:

b)

Ta có: x0 = 1 nên y0 = 12 = 1.

Hệ số góc của tiếp tuyến là k = 2 nên phương trình tiếp tuyến có dạng y = 2x + c.

Suy ra: 1 = 2.1 + c c = –1.

Vậy phương trình tiếp tuyến là y = 2x – 1.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Nếu một quả bóng được thả rơi tự do từ đài quan sát trên sân thượng của tòa nhà Landmark 81 (Thành phố Hồ Chí Minh) cao 461,3 m xuống mặt đất. Có tính được vận tốc của quả bóng khi nó chạm đất hay không? (Bỏ qua sức cản không khí).

Xem lời giải »


Câu 2:

Một vật di chuyển trên một đường thẳng (H.9.2). Quãng đường s của chuyển động là một hàm số của thời gian t, s = s(t) (được gọi là phương trình của chuyển động).

a) Tính vận tốc trung bình của vật trong khoảng thời gian từ t0 đến t.

Xem lời giải »


Câu 3:

b) Giới hạn limtt0s(t)s(t0)tt0  cho ta biết điều gì ?

Một vật di chuyển trên một đường thẳng (H.9.2). Quãng đường s của chuyển động là một hàm số của thời gian t, s = s(t) (được gọi là phương trình của chuyển động).  a) Tính vận tốc trung bình của vật trong khoảng thời gian từ t0 đến t. (ảnh 1)

 

Xem lời giải »


Câu 4:

Điện lượng Q truyền trong dây dẫn là một hàm số của thời gian t, có dạng Q = Q(t).

a) Tính cường độ trung bình của dòng điện trong khoảng thời gian từ t0 đến t.

Xem lời giải »


Câu 5:

Viết phương trình tiếp tuyến của parabol (P): y = –2x2 tại điểm có hoành độ x0 = –1.

Xem lời giải »


Câu 6:

Người ta xây dựng một cây cầu vượt giao thông hình parabol nối hai điểm có khoảng cách là 400 m (H.9.4). Độ dốc của mặt cầu không vượt quá (độ dốc tại một điểm được xác định bởi góc giữa phương tiếp xúc với mặt cầu và phương ngang như Hình 9.5). Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất).

Người ta xây dựng một cây cầu vượt giao thông hình parabol nối hai điểm có khoảng cách là 400 m (H.9.4). Độ dốc của mặt cầu không vượt quá  (độ dốc tại một điểm được xác định bởi góc giữa phương tiếp xúc với mặt cầu và phương ngang như Hình 9.5). Tính chiều cao giới hạn từ đỉnh cầu đến mặt đường (làm tròn kết quả đến chữ số thập phân thứ nhất).  (ảnh 1)

Xem lời giải »


Câu 7:

Tính (bằng định nghĩa) đạo hàm của các hàm số sau:

a) y = x2 – x tại x0 = 1;

Xem lời giải »


Câu 8:

Tính (bằng định nghĩa) đạo hàm của các hàm số sau:

b) y = –x3 tại x0 = –1.

Xem lời giải »