Bài 4.22 trang 94 Toán 11 Tập 1 - Kết nối tri thức


Cho hình lăng trụ tam giác ABC.ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AA, BB, CC. Chứng minh rằng mặt phẳng (MNP) song song với mặt phẳng (ABC).

Giải Toán 11 Bài 13: Hai mặt phẳng song song - Kết nối tri thức

Bài 4.22 trang 94 Toán 11 Tập 1: Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N, P lần lượt là trung điểm của các cạnh AA', BB', CC'. Chứng minh rằng mặt phẳng (MNP) song song với mặt phẳng (ABC).

Lời giải:

Bài 4.22 trang 94 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Vì ABC.A'B'C' là hình hình lăng trụ tam giác nên ABB'A' và BCC'B' là các hình bình hành hay cũng là các hình thang.

Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN là đường trung bình của hình thang ABB'A', do đó MN // AB, suy ra MN song song với mặt phẳng (ABC).

Tương tự, ta chứng minh được NP // BC, suy ra NP song song với mặt phẳng (ABC).

Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABC) nên hai mặt phẳng (MNP) và (ABC) song song với nhau.

Lời giải bài tập Toán 11 Bài 13: Hai mặt phẳng song song hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: