Bài 4.3 trang 77 Toán 11 Tập 1 - Kết nối tri thức


Cho mặt phẳng (P) và hai đường thẳng a, b nằm trong (P). Một đường thẳng c cắt hai đường thẳng a và b tại hai điểm phân biệt. Chứng minh rằng đường thẳng c nằm trong mặt phẳng (P).

Giải Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian - Kết nối tri thức

Bài 4.3 trang 77 Toán 11 Tập 1: Cho mặt phẳng (P) và hai đường thẳng a, b nằm trong (P). Một đường thẳng c cắt hai đường thẳng a và b tại hai điểm phân biệt. Chứng minh rằng đường thẳng c nằm trong mặt phẳng (P).

Lời giải:

Bài 4.3 trang 77 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Giả sử đường thẳng c cắt hai đường thẳng a và b lần lượt tại hai điểm phân biệt A và B.

Vì A thuộc a và a nằm trong (P) nên A thuộc (P).

Vì B thuộc B và b nằm trong (P) nên B thuộc (P).

Đường thẳng c có hai điểm phân biệt A và B cùng thuộc mặt phẳng (P) nên tất cả các điểm của đường thẳng c đều thuộc (P) hay đường thẳng c nằm trong mặt phẳng (P).

Lời giải bài tập Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: