Bài 4.4 trang 77 Toán 11 Tập 1 - Kết nối tri thức
Cho hình chóp tứ giác S.ABCD và M là một điểm thuộc cạnh SC (M khác S, C). Giả sử hai đường thẳng AB và CD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD).
Giải Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian - Kết nối tri thức
Bài 4.4 trang 77 Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD và M là một điểm thuộc cạnh SC (M khác S, C). Giả sử hai đường thẳng AB và CD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD).
Lời giải:
Vì N thuộc đường thẳng AB nên N thuộc mặt phẳng (ABM), lại có M thuộc mặt phẳng (ABM) nên đường thẳng MN nằm trong mặt phẳng (ABM) (1).
Vì N thuộc đường thẳng CD nên N thuộc mặt phẳng (SCD), vì M thuộc cạnh SC nên M thuộc mặt phẳng (SCD), do đó đường thẳng MN nằm trong mặt phẳng (SCD) (2).
Từ (1) và (2) suy ra đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD).
Lời giải bài tập Toán 11 Bài 10: Đường thẳng và mặt phẳng trong không gian hay, chi tiết khác:
Câu hỏi trang 71 Toán 11 Tập 1: Hãy tìm một số hình ảnh của mặt phẳng trong thực tế. ....
Câu hỏi trang 72 Toán 11 Tập 1: Có bao nhiêu mặt phẳng đi qua ba điểm thẳng hàng? ....