Cho hàm số f( x ) = x + 1/| x + 1|. Hàm số f(x) liên tục trên A. (–∞; +∞). B. (–∞; – 1]. C. (–∞; – 1) ∪ (– 1; +∞). D. [– 1; +∞).
Câu hỏi:
Cho hàm số \(f\left( x \right) = \frac{{x + 1}}{{\left| {x + 1} \right|}}\). Hàm số f(x) liên tục trên
A. (–∞; +∞).
B. (–∞; – 1].
C. (–∞; – 1) ∪ (– 1; +∞).
D. [– 1; +∞).
Trả lời:
Lời giải:
Đáp án đúng là: C
Ta có: \(f\left( x \right) = \frac{{x + 1}}{{\left| {x + 1} \right|}}\)\( = \left\{ \begin{array}{l}\frac{{x + 1}}{{x + 1}}\,\,\,\,khi\,\,\,x + 1 > 0\\\frac{{x + 1}}{{ - \left( {x + 1} \right)}}\,\,\,\,khi\,\,\,x + 1 < 0\end{array} \right.\)\( = \left\{ \begin{array}{l}1\,\,\,\,khi\,\,\,x > - 1\\ - 1\,\,\,\,khi\,\,\,x < - 1\end{array} \right.\).
Tập xác định của hàm số là D = (–∞; – 1) ∪ (– 1; +∞).
Từ đó suy ra hàm số đã cho liên tục trên (–∞; – 1) ∪ (– 1; +∞).
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:
Câu 1:
Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).
C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).
Xem lời giải »
Câu 2:
Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng
A. 1.
B. 2.
C. – 1.
D. 0.
Xem lời giải »
Câu 3:
Cho cấp số nhân lùi vô hạn (un) với \({u_n} = \frac{2}{{{3^n}}}.\) Tổng của cấp số nhân này bằng
A. 3.
B. 2.
C. 1.
D. 6.
Xem lời giải »
Câu 4:
Cho hàm số \(f\left( x \right) = \sqrt {x + 1} - \sqrt {x + 2} \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \infty \).
B. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\).
C. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - 1\).
D. \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = - \frac{1}{2}\).
Xem lời giải »
Câu 5:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + x - 2}}{{x - 1}}\,\,\,\,n\^e 'u\,\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,x = 1\end{array} \right..\) Hàm số f(x) liên tục tại x = 1 khi
A. a = 0.
B. a = 3.
C. a = – 1.
D. a = 1.
Xem lời giải »
Câu 6:
Cho dãy số (un) có tính chất |un – 1| < \(\frac{2}{n}\). Có kết luận gì về giới hạn của dãy số này?
Xem lời giải »
Câu 7:
Tìm giới hạn của các dãy số có số hạng tổng quát cho bởi công thức sau:
a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);
b) \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \);
c) \[{{\rm{w}}_n} = \frac{{\sin \,n}}{{4n}}\].
Xem lời giải »
Câu 8:
Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số.
a) 1,(01);
b) 5,(132).
Xem lời giải »