Cho hàm số y = tan x. a) Xét tính chẵn, lẻ của hàm số. b) Hoàn thành bảng giá trị sau của hàm số y = tan x trên khoảng ( - pi/2; pi /2).


Câu hỏi:

Cho hàm số y = tan x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = tan x trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\).

x

\( - \frac{\pi }{3}\)

\( - \frac{\pi }{4}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

y = tan x

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm M(x; tan x) với x \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số y = tan x trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = tan x như hình dưới đây.

Media VietJack

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số y = tan x.

Trả lời:

Lời giải:

a) Hàm số y = f(x) = tan x có tập xác định là D = ℝ \ \(\left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = tan (– x) = – tan x = – f(x), x D.

Vậy y = tan x là hàm số lẻ.

b) Ta có: tan 0 = 0, \(\tan \frac{\pi }{4} = 1,\tan \frac{\pi }{3} = \sqrt 3 ,\tan \frac{\pi }{6} = \frac{{\sqrt 3 }}{3}\).

Vì y = tan x là hàm số lẻ nên \(\tan \left( { - \frac{\pi }{4}} \right) = - \tan \frac{\pi }{4} = - 1\), \(\tan \left( { - \frac{\pi }{3}} \right) = - \tan \frac{\pi }{3} = - \sqrt 3 \),

\(\tan \left( { - \frac{\pi }{6}} \right) = - \tan \frac{\pi }{6} = - \frac{{\sqrt 3 }}{3}\).

Vậy ta hoàn thành được bảng như sau:

x

\( - \frac{\pi }{3}\)

\( - \frac{\pi }{4}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

y = tan x

\( - \sqrt 3 \)

– 1

\( - \frac{{\sqrt 3 }}{3}\)

0

\(\frac{{\sqrt 3 }}{3}\)

1

\(\sqrt 3 \)

 c) Quan sát Hình 1.16, ta thấy đồ thị hàm số y = tan x có:

+) Tập giá trị là ℝ;

+) Đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\,\,\frac{\pi }{2} + k\pi } \right),\,k \in \mathbb{Z}\) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Giả sử vận tốc v (tính bằng lít/giây) của luồng khí trong một chu kì hô hấp (tức là thời gian từ lúc bắt đầu của một nhịp thở đến khi bắt đầu của nhịp thở tiếp theo) của một người nào đó ở trạng thái nghỉ ngơi được cho bởi công thức

\(v = 0,85\sin \frac{{\pi t}}{3}\),

trong đó t là thời gian (tính bằng giây). Hãy tìm thời gian của một chu kì hô hấp đầy đủ và số chu kì hô hấp trong một phút của người đó.

Xem lời giải »


Câu 2:

Hoàn thành bảng sau:

x

sin x

cos x

tan x

cot x

\(\frac{\pi }{6}\)

?

?

?

?

0

?

?

?

?

\( - \frac{\pi }{2}\)

?

?

?

?

Xem lời giải »


Câu 3:

Tìm tập xác định của hàm số \(y = \frac{1}{{\sin x}}.\)

Xem lời giải »


Câu 4:

Cho hai hàm số f(x) = x2 và g(x) = x3, với các đồ thị như hình dưới đây.

Media VietJack

a) Tìm các tập xác định Df, Dg của các hàm số f(x) và g(x).

b) Chứng tỏ rằng f(– x) = f(x), x Df. Có nhận xét gì về tính đối xứng của đồ thị hàm số y = f(x) đối với hệ trục tọa độ Oxy?

c) Chứng tỏ rằng g(– x) = – g(x), x Dg. Có nhận xét gì về tính đối xứng của đồ thị hàm số y = g(x) đối với hệ trục tọa độ Oxy?

Xem lời giải »


Câu 5:

Sử dụng đồ thị đã vẽ ở Hình 1.16, hãy xác định các giá trị của x trên đoạn \(\left[ { - \pi ;\,\frac{{3\pi }}{2}} \right]\) để hàm số y = tan x nhận giá trị âm.

Xem lời giải »


Câu 6:

Cho hàm số y = cot x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π).

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

y = cot x

?

?

?

?

?

?

?

 Bằng cách lấy nhiều điểm M(x; cot x) với x (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π).

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = cot x như hình dưới đây.

Media VietJack

Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số y = cotx.

Xem lời giải »


Câu 7:

Sử dụng đồ thị đã vẽ ở Hình 1.17, hãy xác định các giá trị của x trên đoạn \(\left[ { - \frac{\pi }{2};\,2\pi } \right]\) để hàm số y = cot x nhận giá trị dương.

Xem lời giải »


Câu 8:

Tìm tập xác định của các hàm số sau:

a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);

b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \).

Xem lời giải »