Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình x = 2cos ( 5t - pi /6). Ở đây, thời gian t tính bằng giây và quãng đường x tính bằng centimét. Hãy cho biết tro


Câu hỏi:

Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình

\(x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\).

Ở đây, thời gian t tính bằng giây và quãng đường x tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?

Trả lời:

Lời giải:

Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)

\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)

\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\)

\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},\,\,k \in \mathbb{Z}\)

Trong khoảng thời gian từ 0 đến 6 giây, tức là 0 ≤ t ≤ 6 hay \(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)

\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)

Vì k ℤ nên k {0; 1; 2; 3; 4; 5; 6; 7; 8}.

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu có độ lớn v0 không đổi. Tìm góc bắn α để quả đạn pháo bay xa nhất, bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất.

Xem lời giải »


Câu 2:

Cho hai phương trình 2x – 4 = 0 và (x – 2)(x2 + 1) = 0.

Tìm và so sánh tập nghiệm của hai phương trình trên.

Xem lời giải »


Câu 3:

Xét sự tương đương của hai phương trình sau:

\(\frac{{x - 1}}{{x + 1}} = 0\) và x2 – 1 = 0.

Xem lời giải »


Câu 4:

Media VietJack

a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng [0; 2π).

b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho.

Xem lời giải »