Giải các phương trình sau: a) cos ( 3x - pi /4) =  - căn bậc hai của 2 /2; b) 2sin^2 x – 1 + cos 3x = 0; c) tan ( 2x + pi /5) = tan ( x - pi /6).


Câu hỏi:

Giải các phương trình sau:

a) \(\cos \left( {3x - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\);

b) 2sin2 x – 1 + cos 3x = 0;

c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\).

Trả lời:

Lời giải:

a) \(\cos \left( {3x - \frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) = \cos \frac{{3\pi }}{4}\)

\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi \\3x - \frac{\pi }{4} = - \frac{{3\pi }}{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}3x = \pi + k2\pi \\3x = - \frac{\pi }{2} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = - \frac{\pi }{6} + k\frac{{2\pi }}{3}\end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\]

Vậy phương trình đã cho có các nghiệm là \[x = \frac{\pi }{3} + k\frac{{2\pi }}{3},k \in \mathbb{Z}\,\] và \[x = - \frac{\pi }{6} + k\frac{{2\pi }}{3},k \in \mathbb{Z}\].

b) 2sin2 x – 1 + cos 3x = 0

– (1 – 2sin2 x) + cos 3x = 0

– cos 2x + cos 3x = 0

cos 3x = cos 2x

\( \Leftrightarrow \left[ \begin{array}{l}3x = 2x + k2\pi \\3x = - 2x + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\5x = k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = k\frac{{2\pi }}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình đã cho có các nghiệm là \[x = k2\pi ,k \in \mathbb{Z}\,\] và \[x = k\frac{{2\pi }}{5},k \in \mathbb{Z}\].

c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\)

\( \Leftrightarrow 2x + \frac{\pi }{5} = x - \frac{\pi }{6} + k\pi ,\,\,k \in \mathbb{Z}\)

\( \Leftrightarrow x = - \frac{{11\pi }}{{30}} + k\pi ,\,\,k \in \mathbb{Z}\)

Vậy phương trình đã cho có các nghiệm là \(x = - \frac{{11\pi }}{{30}} + k\pi ,\,\,k \in \mathbb{Z}\).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Biểu diễn các góc lượng giác \(\alpha = - \frac{{5\pi }}{6}\), \(\beta = \frac{\pi }{3}\), \(\gamma = \frac{{25\pi }}{3}\), \(\delta = \frac{{17\pi }}{6}\) trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

A. β và γ.

B. α, β, γ.

C. β, γ, δ.

D. α và β.

Xem lời giải »


Câu 2:

Trong các khẳng định sau, khẳng định nào là sai?

A. sin(π – α) = sin α.

B. cos(π – α) = cos α.

C. sin(π + α) = – sin α.

D. cos(π + α) = – cos α.

Xem lời giải »


Câu 3:

Trong các khẳng định sau, khẳng định nào là sai?

A. cos(a – b) = cos a cos b – sin a sin b.

B. sin(a – b) = sin a cos b – cos a sin b.

C. cos(a + b) = cos a cos b – sin a sin b.

D. sin(a + b) = sin a cos b + cos a sin b.

Xem lời giải »


Câu 4:

Rút gọn biểu thức M = cos(a + b) cos(a – b) – sin(a + b) sin(a – b), ta được:

A. M = sin 4a.

B. M = 1 – 2 cos2 a.

C. M = 1 – 2 sin2 a.

D. M = cos 4a.

Xem lời giải »


Câu 5:

Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu được gọi tương ứng là huyết áp tâm thu và tâm trương. Chỉ số huyết áp của chúng ta được viết là huyết áp tâm thu/huyết áp tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử huyết áp của một người nào đó được mô hình hóa bởi hàm số

p(t) = 115 + 25sin(160πt),

trong đó p(t) là huyết áp tính theo đơn vị mmHg (milimét thủy ngân) và thời gian t tính theo phút.

a) Tìm chu kì của hàm số p(t).

b) Tìm số nhịp tim mỗi phút.

c) Tìm chỉ số huyết áp. So sánh huyết áp của người này với huyết áp bình thường.

Xem lời giải »


Câu 6:

Khi một tia sáng truyền từ không khí vào mặt nước thì một phần tia sáng bị phản xạ trên bề mặt, phần còn lại bị khúc xạ như trong Hình 1.26. Góc tới i liên hệ với góc khúc xạ r bởi Định luật khúc xạ ánh sáng

\(\frac{{\sin i}}{{\sin {\rm{r}}}} = \frac{{{n_2}}}{{{n_1}}}\).

Ở đây, n1 và n2 tương ứng là chiết suất của môi trường 1 (không khí) và môi trường 2 (nước). Cho biết góc tới i = 50°, hãy tính góc khúc xạ, biết rằng chiết suất của không khí bằng 1 còn chiết suất của nước là 1,33.

Media VietJack

Xem lời giải »