Một kĩ sư thiết kế một đường ray tàu lượn, mà mặt cắt của nó gồm một cung đường cong có dạng parabol (H.9.6a), đoạn dốc lên L1 và đoạn dốc xuống L2 là những phần đường thẳng có hệ số góc lần
Câu hỏi:
Một kĩ sư thiết kế một đường ray tàu lượn, mà mặt cắt của nó gồm một cung đường cong có dạng parabol (H.9.6a), đoạn dốc lên L1 và đoạn dốc xuống L2 là những phần đường thẳng có hệ số góc lần lượt là 0,5 và –0,75. Để tàu lượn chạy êm và không bị đổi hướng đột ngột, L1 và L2 phải là những tiếp tuyến của cung parabol tại các điểm chuyển tiếp P và Q (H.9.6b). Giả sử gốc tọa độ đặt tại P và phương trình của parabol là y = ax2 + bx + c, trong đó x tính bằng mét.
a) Tìm c.
b) Tính y'(0) và tìm b.
Trả lời:
a)
Vì gốc tọa độ đặt tại P nên P(0; 0) do đó ta có: c = y(0) = 0.
b)
Ta tính được: y' = 2ax + b.
Suy ra: y'(0) = b.
Mà L1 là phương trình tiếp tuyến tại P có hệ số góc 0,5 nên y'(0) = 0,5 ⇒ b = 0,5.